ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ МЕТАЛЛУРГИИ И МАТЕРИАЛОВЕДЕНИЯ имени А.А. БАЙКОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

ХРУЩЁВА Анастасия Александровна

ЗОЛЬ-ГЕЛЬ СИНТЕЗ КОМПОЗИТНЫХ НАНОЧАСТИЦ НА ОСНОВЕ ОКСИДОВ АЛЮМИНИЯ, ЦЕРИЯ И ЦИРКОНИЯ

02.00.01 - Неорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель

к.х.н. Трусова Е.А.

Москва 2016

оглавление

ВВЕДЕНИЕ	5
ГЛАВА 1. Современное состояние работ по синтезу нанопорошков на	8
основе оксидов алюминия, церия и циркония (литературный обзор)	
1.1. Введение	8
1.2. Оксид алюминия	10
1.3. Оксид циркония	23
1.4. Оксид церия	31
1.5. Твердые растворы $Ce_xZr_{1-x}O_2$	38
1.6. Нанокомпозиты на основе оксида алюминия	54
1.7. Заключение	68
ГЛАВА 2. Экспериментальная часть	70
2.1. Синтез наночастиц простых оксидов	70
2.1.1. Оксид алюминия	70
2.1.2. Оксид циркония	70
2.1.3. Оксид церия	71
2.1.4. Криохимический синтез CeO ₂	71
2.1.5. Оксид магния	72
2.2. Твердые растворы $Ce_xZr_{1-x}O_2$	73
2.3. Синтез композитных наночастиц	73
2.3.1. Двухфазные наночастицы с брутто-формулой MgO-Al ₂ O ₃	73
2.3.2. Трехфазные наночастицы $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$	74
2.4. Исследования фазового состава и морфологии синтезированни	ых 76
нанопорошков	
2.4.1. Рентгеновская дифракция	76
2.4.2. Электроакустический метод определения	77
электрокинетического потенциала золей	
2.4.3. Просвечивающая и сканирующая электронная микроскоп	ия 77
2.4.4. Адсорбция-десорбция азота	78

2.4.5. Синхронный термический анализ с масс-спектрометрией				
2.4.6. Диффузионная аэрозольная спектрометрия				
2.4.7. Фурье-ИК-спектроскопия				
2.4.8. Элементный анализ				
2.5. Тестирование разработанного композитного нанопорошка	80			
Ce _{0,09} Zr _{0,91} O ₂ /MgAl ₆ O ₁₀ /Al ₂ O ₃ в консолидации с целью получения				
мелкозернистой керамики				
2.5.1. Дилатометрия	80			
2.5.2. Одноосное прессование с последующим спеканием	80			
2.5.3. Магнитно-импульсное прессование и спекание	81			
2.5.4. Горячее прессование				
2.5.5. Дополнительная термообработка керамики после горячего				
прессования				
2.6. Анализ микроструктуры и плотности полученной керамики	83			
2.7. Заключение	84			
ГЛАВА 3. Результаты и обсуждение				
3.1. Однофазные наночастицы	85			
3.1.1. Оксид алюминия	87			
3.1.2. Оксид циркония	99			
3.1.3. Оксид церия	110			
3.1.4. Твердые растворы $Ce_xZr_{1-x}O_2$	113			
3.1.5. Оксид магния	122			
3.2. Композитные наночастицы				
3.2.1. Двухфазные наночастицы с брутто формулой				
MgO-Al ₂ O ₃				
3.2.2. Трехфазные наночастицы $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$	128			
3.3. Предполагаемые схемы формирования металлоксидных	132			
наноструктур в условиях золь-гель синтеза и последующей				
термообработки				

3.4. Тестирование разработанного композитного нанопорошка 138 Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃ в консолидации с целью получения мелкозернистой керамики

3.4.1. Дилатометрия	138
3.4.2. Одноосное прессование с последующим спеканием	142
3.4.3. Магнитно-импульсное прессование	144
3.4.4. Горячее прессование	147
3.4.5. Заключение	156
выводы	157
СПИСОК ЛИТЕРАТУРЫ	158

введение

Разработанный способ получения наночастиц оксидов металлов базируется на нанотехнологических приемах, в основу которых положено моделирование на молекулярном уровне структуры будущих частиц еще на стадии формирования коллоидов. Нанопорошки оксидов Al, Ce и Zr являются высоковостребованными полупродуктами для получения мелкозернистой керамики широкого спектра применения: протезы (тазобедренного, коленного, локтевого суставов, зубных), экологические катализаторы, ТОТЭ, сажевые фильтры, конструкционная керамика. Однако исследования закономерностей формирования наноструктур, необходимых для создания технологии, немногочисленны и разрознены.

Работа выполнена в соответствии с планом научно-исследовательских работ Федерального государственного бюджетного учреждения науки Института металлургии и материаловедения им. А.А. Байкова РАН при поддержке Программы № 22 Президиума РАН, программы УМНИК (Гос. контракт №10740р/16925 от 13.08.2012) и РФФИ: гранты №№ 12-08-31052мол_а и 13-03-00350а.

Целью работы является создание на основе золь-гель метода способа получения нанопорошков оксидов алюминия, церия и циркония, твердых растворов

 $Ce_xZr_{1-x}O_2$ (0,03 \leq x \leq 0,16) и композитных нанопорошков $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$, предназначенных для получения мелкозернистой керамики.

Для достижения указанной цели были поставлены и решены следующие задачи:

1) исследование влияния мольного отношения реагентов, источника металла, криообработки золя (-196°С) и режима прокаливания геля на фазовый состав и морфологию разработанных нанопорошков, с использованием в качестве стабилизаторов золя (Ст) моноэтаноламина, тетраэтиламмоний гидроксида, N,N-диметилоктиламина (МЭА, ТЭАГ, ДМОА, соответственно);

2) характеризация синтезированных объектов с использованием комплекса инструментальных методов: ПЭМ, СЭМ, рентгеновской дифракции, адсорбциидесорбции N₂, диффузионной аэрозольной спектрометрии (ДАС);

 создание лабораторной технологии синтеза композитных нанопорошков Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃, предназначенных для получения плотной мелкозернистой керамики;

4) исследование влияния способа получения (механическим смешиванием или нанесением) нанопорошка состава Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃, условий его компактирования и режима спекания на микроструктуру керамики, используя методы: СЭМ/ЭДС, РЭМ/РМА и дилатометрический анализ.

Научная новизна полученных результатов заключается в следующем:

 установлено, что использование в качестве стабилизаторов золей МЭА, ТЭАГ и ДМОА позволяет получать нанопорошки оксидов Al, Ce и Zr с размерами кристаллитов ≤18 нм;

установлено, что оптимальным для получения наночастиц γAl₂O₃ и Ce_{0,09}Zr_{0,91}O₂ с размерами менее 10 нм является мольное отношение в реакционной смеси МЭА/∑Ме (Ме – металл), равное 2;

• установлено, что криообработка Се-содержащего золя приводит к повышению дисперсности порошка CeO₂ в 3,5-4,0 раза;

 разработан и теоретически обоснован способ синтеза композитных наночастиц Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃, которые синтезированы впервые; доказано наличие химического взаимодействия между структурными элементами всех трех фаз;

• установлено, что использование разработанного композитного нанопорошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ позволяет получить горячим прессованием мелкозернистую керамику с плотностью на 20% выше, чем у

керамики, изготовленной в тех же условиях из механической смеси того же химического и фазового состава.

Практическая ценность и теоретическая значимость работы:

Разработанный золь-гель метод синтеза наночастиц оксидов Al, Ce, Zr и композитных наночастиц на их основе может быть использован в качестве основы экономичной технологии производства нанопорошков для мелкозернистой керамики широкого спектра назначения. Все полученные результаты являются оригинальными, открывают новые возможности для создания и внедрения инновационных технологий производства материалов с заданными свойствами.

Апробация работы. Полученные результаты доложены автором на VIII-XI конференциях молодых Российских ежегодных научных сотрудников И аспирантов «Физико-химия и технология неорганических материалов» ИМЕТ РАН, 2011-2014 гг., Москва, на конференции «Engineering Ceramics from materials (Братислава) 2011, to components» на международном форуме по Ш нанотехнологиям Rusnanotech, (Москва) 2011. Международной специализированной конференции "КерамСиб, Современные керамические материалы. Свойства. Технологии. Применение" 2012 (Москва), на конференции «E-MRS Fall Meeting» (Варшава) 2012 г., на 5-м Международном керамическом конгрессе (ICC-5) 2014 г. (Пекин), на XII международной конференции по наноматериалам NANO2014 (Москва), на конференции Золь-гель 2014 (Суздаль) и др. (всего 25 тезисов).

Автор выражает благодарность научному руководителю к.х.н. Е.А. Трусовой, д.ф.-м.н. В.В. Белоусову (зав. лаб. № 31 ИМЕТ РАН), к.х.н. Е.В. Шелехову, к.х.н. С.В. Куцеву, к.т.н. А.С. Лысенкову, к.х.н. А.Н. Кириченко, к.т.н. Н.А. Аладьеву, к.т.н. А.С. Кайгородову, к.т.н. М.А. Гольдберг, С.С. Абрамчуку, к.т.н. Ситникову А.И., к.т.н. Тельновой Г.Б., д.х.н. Ю.Ф. Каргину за проведение инструментального анализа синтезированных систем, а также к.х.н. К.В. Вохминцеву и асп. К.В. Коцаревой за товарищескую поддержку.

7

Глава 1. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СИНТЕЗУ НАНОПОРОШКОВ НА ОСНОВЕ ОКСИДОВ АЛЮМИНИЯ, ЦЕРИЯ И ЦИРКОНИЯ

(литературный обзор)

1.1. Введение

Разработка новых наноматериалов на основе тугоплавких оксидов металлов является актуальной задачей исследователей в области нанотехнологий по всему Для разработки международных стандартов на миру. мелкозернистые керамические материалы с регулируемыми микроструктурой и прочностью необходимо располагать набором подробно охарактеризованных нанопорошков с узким распределением частиц по размеру. [1, 2]. Наиболее гибкими методами синтеза наноструктур являются химические методы «снизу-вверх», позволяющие контролировать дисперсность, фазовую и химическую чистоту материала, а также архитектуру пор. Разработка экономичного и технологически доступного метода получения нанопорошков Al_2O_3 , ZrO_2 , CeO_2 , MgO является актуальной задачей, а успешное ее решение откроет новые возможности для создания материалов с улучшенными каталитическими, биологическими, механическими И электронными свойствами [3, 4, 5, 6]. Известно, что нанокомпозиты на основе перечисленных выше оксидов металлов обладают рядом уникальных свойств: высокими показателями прочности на сжатие, растяжения и изгиб, а также трещиностойкостью, износоустойчивостью, повышенными коррозионной стойкостью и биоинертностью, им свойственна хорошая биосовместимость.

В представленном обзоре проведен анализ современного состояния работ 1990-2016 гг. по синтезу нанопорошков Al_2O_3 , CeO_2 , ZrO_2 , $Ce_xZr_{1-x}O_2$ и исследованию их физико-химических свойств. Спектр применения мелкозернистой керамики на основе оксидов Al, Zr и Ce весьма широк (Рис. 1): материалы имплантатов, экологические катализаторы, твердооксидные топливные элементы (ТОТЭ), сажевые фильтры, адсорбенты, газовые сенсоры, мелкозернистая конструкционная керамика.

Рис. 1. Области применения нанокомпозитов на основе Al_2O_3 , CeO₂, ZrO₂, Ce_xZr_{1-x}O₂.

По данным исследовательской компании Abercade, оксиды металлов составляют 80% объема рынка нанопорошков (Рис. 2). Как видно из диаграммы, сложные оксиды и смеси присутствуют в ограниченном количестве, несмотря на то, что потребность в них растет с каждым годом.

Рис. 2. Объемы рынка нанопорошков за 2014 г.

Разработка технологических решений и получение наноструктурированных композитов требует целенаправленных исследований и экспериментов. Такие исследования ведутся во всем мире. Настоящий обзор посвящен разработкам способов получения порошкообразных полупродуктов, которые базируются на нанотехнологических приемах и подходах.

1.2. Оксид алюминия

Нанопорошки Al_2O_3 являются высоковостребованным полупродуктом для получения катализаторов [7-9], пористой керамики для фильтров и мембран [10], антимикробных реагентов [11], биоматериалов и материалов медицинского назначения [12]. Керамика на основе MgAl₂O₄ шпинели является перспективным полупродуктом при создании на его основе новых огнеупорных материалов, производства стекол иллюминаторов, мембран, сенсоров, электроизоляторов, катализаторов и подложек для них [13]. Как известно, по мере прокаливания Al₂O₃ претерпевает несколько фазовых переходов (Схема 1).

Бемит/аморфный
$$Al_2O_3 \xrightarrow{700^{\circ}C} \gamma - Al_2O_3 \xrightarrow{900^{\circ}C} \delta - Al_2O_3 \xrightarrow{1000^{\circ}C} \theta - Al_2O_3 \xrightarrow{1200^{\circ}C} \alpha - Al_2O_3$$
 (1)

Авторы работы [7] обобщили результаты исследований микро- и макроструктуры нанопорошков γ-Al₂O₃. Установлено, что их оксидная подрешетка представлена кубическими плотноупакованными слоями кислорода с ионами Al³⁺, занимающими октаэдрические и тетраэдрические позиции.

Рис. 3. Кристаллическая структура γ-Al₂O₃

Как правило, γ -Al₂O₃ имеет структуру кубической стехиометрической шпинели типа MgAl₂O₄, где позиции ионов Mg²⁺ заняты ионами Al³⁺ (Рис. 3). Это является причиной высокой дефектности структуры в целом.

Исследование [14] посвящено синтезу Al₂O₃ цитратным методом. На первом этапе из гидроксида алюминия Al(OH)₃ и лимонной кислоты C₆H₈O₇ получали алюминия [C₃H₄OH(COO)₃]Al, который цитрат затем полимеризовали В присутствии этиленгликоля C₂H₆O₂. Термообработку полученной смолы проводили на воздухе. Полученный порошок размалывали в мельнице в течение 1 500°C, прокаливали при И дальнейшую обработку проводили Ч, В высокотемпературной печи при 700-1200°С.

Рис. 4. Рентгеновская дифракция на порошках Al₂O₃, прокаленных при: 700-950°C (*a*); 1000-1025°C (*б*); 1050-1200°C (*в*).

Поэтапный рентгенофазовый анализ продуктов прокаливания полученной смолы показал, что при температуре 850-900°С порошок оксида алюминия состоял из γ -Al₂O₃ со структурой дефектной шпинели (Рис. 4*a*). При 1000°С начинался фазовый переход γ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃, и при 1000-1025°С порошок представлял собой смесь фаз α -Al₂O₃ и γ -Al₂O₃ (Рис. 4*б*), которая при 1050°С полностью превращалась в α -Al₂O₃ со средним размером частиц 70 нм (Рис. 4*в*).

На Рис. 5 представлена зависимость размера кристаллитов и содержания фазы γ -Al₂O₃ в порошке от температуры прокаливания. По данным РФА, размер кристаллитов существенно возрастает в интервале температур 1000-1025°C, при этом содержание γ -Al₂O₃ снижается до 7 вес.%.

Рис. 5. Влияние температуры прокаливания порошка Al_2O_3 на содержание в нем фазы γ - Al_2O_3 и средний размер кристаллитов.

представлен В работе [15] способ получения α -Al₂O₃ наночастиц цилиндрической формы диаметром <25 нм, длиной 100-200 нм и удельной поверхностью 27 м²/г модифицированным цитратным методом (Рис. 6). В качестве хелатирующего агента был использован сополимер лимонной и акриловой кислот ($C_6H_8O_7$ и $C_3H_4O_2$, соответственно), полученный при температуре 120-170°С. Сополимер перемешивали с раствором нитрата алюминия в течение 1 ч при 80°С, затем нагревали до 140°С и перемешивали еще 2,5 ч до получения смолы. Ее последующая термообработка при 900°С приводила к получению нанопорошка, по данным РФА, на 98 вес.% состоявшего из α-Al₂O₃. Показано, что условия синтеза, такие как, разбавление исходного раствора нитрата алюминия и мольное отношение полимера к алюминию в растворе способствуют понижению температуры формирования фазы α-Al₂O₃ в ходе прокаливания с 1200 до 900°С.

Рис. 6. Микрофотография ПЭМ нанопорошка (98 вес.% α-Al₂O₃), полученного цитратным методом.

Для получения субмикронных и нанопорошков Al₂O₃ со сферической формой частиц в работе [16] применяли золь-эмульсия-гель метод. К водному раствору Al(NO₃)₃ по каплям добавляли раствор аммиака. Золь перемешивали и нагревали в гидротермальных условиях в течение 2-10 ч. К водному золю добавляли неионный ПАВ - СПЭН 80 (сорбитан моноолеат) в 1,1,1-трихлорэтане ниже или выше критической концентрации мицеллобразования. Критическую концентрацию мицеллообразования (ККМ) ПАВ в органическом растворителе определяли с помощью зависимостей поверхностного натяжения, вязкости, коэффициента преломления света, флуоресценции от концентрации раствора. Показано, что величина ККМ влияет на размер капель золя и, следовательно, на размер частиц Al₂O₃. В результате исследования установлено приблизительное значение ККМ, равное 2,5-3,0 об.% СПЭН-80 в 1,1,1-трихлорэтане. Полученную эмульсию «вода в масле» подвергали интенсивному перемешиванию при скорости 750 и 1500 об./мин. Также проводили эксперимент с одновременным перемешиванием и обработкой ультразвуком (26 кГц) в течение 10 мин. Установлено, что использование ультразвуковой обработки эмульсии приводит к снижению размеров сферических частиц в 1,5-2 раза. Эмульсию промывали

метанолом и ацетоном, сушили при 200°С и прокаливали на воздухе при 1200°С в течение 1 ч. По данным ПЭМ, сферические частицы Al₂O₃ с размерами 10-50 нм образовывали агломераты в виде цепочек, если концентрация ПАВ в органическом растворителе была примерно равна его ККМ.

Мезопористый Al_2O_3 с высокой удельной поверхностью (410 м²/г) и узким распределением по размеру частиц синтезировали с помощью золь-гель метода, основанного на явлении самоорганизации наночастиц [17]. Золь-гель синтез проводили с использованием этиленоксида, пропиленоксида или их блок-сополимера (P123) в качестве стабилизаторов золя. В качестве источника алюминия использовали алюминий изобутилат, [(CH₃)₃CO]₃Al. На Рис. 7 представлены микрофотографии ПЭМ мезопористого оксида алюминия с гексагональными упорядоченными порами со средним размером 68Å, который используют в качестве носителя катализаторов.

Рис. 7. Микрофотографии ПЭМ мезопористого упорядоченного оксида алюминия, сделанные вдоль (А) и перпендикулярно (В) каналам.

В работе [18] проведено сравнение особенностей формирования гидрозолей с использованием аммиачной воды и органозолей – с использованием пропанола. Установлено, что положение изоэлектрической точки в органозолях и гидрозолях не зависит от природы стабилизатора золя и соответствует области pH = 9. Также в работе проводили коагуляцию золей противоионами Cl⁻ и SO₄²⁻. При анализе

зависимостей критической концентрации коагуляции от массовой доли дисперсной фазы авторами установлен нейтрализационный тип коагуляции в изученных Al-содержащих золях за исключением одного случая. Только при коагуляции гидрозоля ионами Cl⁻ отмечено присутствие концентрационной коагуляции. В результате сравнительного исследования свойств органозолей и гидрозолей, синтезированных из нитрата и изопропоксида алюминия, авторы работы делают вывод о сходстве строения поверхностных слоев частиц дисперсной фазы гидрозолей и органозолей Al₂O₃.

В работе [12] авторы изучали влияние природы источника алюминия (AlCl₃ или $(C_3H_7O)_3Al)$ на дисперсность и фазовый состав нанопорошка Al₂O₃. Al-Содержащие золи стабилизировали 28%-ным раствором NH₃, перемешивали 30 ч при комнатной температуре и упаривали при 100°C в течение 24 ч. Прокаливание гелей проводили при 1000°C или 1200°C в течение 2 ч. В случае использования хлорида алюминия в качестве исходного, по данным РФА, средний размер частиц Al₂O₃ составлял 20 нм, а в случае изопропилата – 15 нм.

На Рис. 8 и 9 представлены микрофотографии ПЭМ, ПЭМ высокого разрешения И электронограммы для порошков Al_2O_3 , полученных С AlCl₃ И $(C_{3}H_{7}O)_{3}Al$, соответственно. Они убедительно использованием согласуются с расчетными данными РФА. Установлено, что частицы Al₂O₃ (Рис. 8а) имеют преимущественно сферическую форму и размеры менее 20 нм. На микрофотографии ПЭМ высокого разрешения (Рис. 86) обозначены частицы α-Al₂O₃ с межплоскостным расстоянием (116) d=1,60Å. Согласно электронограмме (Рис. 8*в*), порошок состоял из кристаллической модификации α-Al₂O₃ с межплоскостными расстояниями (116) - 1,60Å и (113) – 2,08Å и модификации у-Al₂O₃. Порошок Al₂O₃ (Рис. 9*a*) состоял из частиц игольчатой формы с размерами 25 нм. На микрофотографии ПЭМ высокого разрешения (Рис. 96) показано d=2,55Å, (104)межплоскостное расстояние соответствующее хорошо окристаллизованному порошку αAl_2O_3 . Согласно электронограмме (Рис. 96), он представлен фазами α -Al₂O₃ (104) (113) (116) и γ -Al₂O₃ (220).

Рис. 8. Микрофотографии ПЭМ (*a*), ПЭМ высокого разрешения (δ) и электронограмма (ϵ) порошка Al₂O₃, полученного с использованием AlCl₃.

Рис. 9. Микрофотографии ПЭМ (*a*), ПЭМ высокого разрешения (б) и электронограмма (*в*) порошка Al₂O₃, полученного с использованием (C₃H₇O)₃Al.

Работа [19] посвящена модифицированному золь-гель методу получения аморфного Al_2O_3 с использованием мочевины (NH₂)₂CO в качестве стабилизатора золя. Адсорбционную способность порошка у-Al₂O₃ исследовали с помощью (этилацетат, перемешивания с органическим растворителем метанол, тетрагидрофуран, метилэтилкетон) в течение 45 мин и последующего анализа изотерм адсорбции у-Al₂O₃ для каждого из органических растворителей. что аморфный пористый порошок γ-Al₂O₃ с отрицательно Установлено, обладает высокой заряженной поверхностью частиц абсорбционной

способностью, и это может быть использовано в хроматографии или биомедицинских целях.

Авторы работы [20] получали нанопорошки Al_2O_3 золь-гель методом. Синтез проводили следующим образом: $Al(i-OC_3H_7)_3$ растворяли в изопропаноле при pH=7,5 с образованием моноядерных сольватированных комплексов. После формирования полимерных цепей проводили их гидролиз, в результате которого происходила их поликонденсация в трехмерный гель. Медленное удаление растворителя и последующее прокаливание при 390°C приводили к формированию блоков октаэдрической формы и формированию в дальнейшем кубической модификации αAl_2O_3 .

В работе [21] α-Al₂O₃ синтезировали с помощью золь-гель метода. К водному золю Al(NO₃)₃ и NH₄OH при 80°C приливали раствор азотной кислоты до достижения pH=4. Затем к золю добавляли сажу с удельной поверхностью 106 m^2/Γ в весовом отношении C/Al = 1/5. Полученную смесь упаривали до геля при 100°С. Затем проводили прокаливание в микроволновой печи мощностью 900 Вт в течение 10 мин. Для удаления остаточного углерода порошок дополнительно прокаливали при 650°С в муфельной печи. По данным рентгеновской дифракции и ПЭМ (Рис. 10), размеры кристаллитов нанопорошка α-Al₂O₃ находились в интервале 25-100 нм. Удельная поверхность порошка Al₂O₃ составляла 52 м²/г. Авторы работы изучали влияние количества поверхностно-активного вещества (ПАВ) на реологические свойства суспензий на основе Al₂O₃. Исследование проводили для нанопорошка Al₂O₃, полученного авторами, и для микронного порошка Al₂O₃ фирмы MARTOXID с удельной поверхностью 1,5 м²/г. Для подавления коагуляции частиц добавляли ПАВ – динатрий-4,5-дигидроксибензол-1,3-дисульфонат (TIRON). Установлено, что для нанопорошка Al₂O₃, благодаря его высокой удельной поверхности, требуется в 10 раз большее количество TIRON, чем для микронного порошка.

Рис. 10. Рентгеновская дифракции порошка Al_2O_3 , полученного при различной длительности микроволнового спекания (*a*) и микрофотография ПЭМ α - Al_2O_3 , полученного после 10 мин. спекания (*б*).

Сферические частицы α-Al₂O₃ также можно получать золь-гель методом с использованием бис(2-этилгексил) сульфосукцината натрия и анионного ПАВ додецилбензолсульфоната натрия в качестве стабилизаторов золей [22]. Полученные гели прокаливали при 1200°С. Установлено, что применение предложенных авторами стабилизаторов золей позволяет получать сферические частицы с размерами 20-30 нм.

Для получения олигомерного геля авторы работы [23] использовали в качестве источника алюминия алюматран (алюминиевое производное триэтаноламина). Его растворяли в метаноле, контролируя pH раствора с помощью HNO₃, и упаривали до состояния геля. Авторы работы исследовали реологию гелей при различных температуре и степени гидролиза. Установлено, что минимальное время формирования геля 580 сек. при pH=9, t=36°C и степени гидролиза, равной 27.

Авторы работы [24] считают применение гомогенного осаждения предпочтительным для получения материалов с высокими дисперсностью и удельной поверхностью. Для получения αAl_2O_3 использовали мочевину в качестве осадителя. Размер частиц определяли с помощью фотонной корреляционной спектроскопии, и для свежеприготовленного ксерогеля (300°С) средний размер составил 5 нм, а для прокаленного при 1200°С порошка – более 3000 нм.

Во второй части работы проводили сравнение метода осаждения, описанного выше, с цитратным методом. К нитрату алюминия медленно добавляли поливиниловый спирт при перемешивании и подогреве до формирования геля, который высушивали и прокаливали при 1200°С в течение 2 ч. Таким образом получали слабо агрегированные микронные порошки с размерами частиц ~1200 нм. Показано, что при использовании цитратного метода синтеза αAl₂O₃ размеры частиц порошка после прокаливания при 1200°С меньше в 2,5 раза, чем при использовании мочевины.

В работе [25] этот метод сочетали с осаждением. В ходе синтеза использовали нитрат алюминия и карбонат аммония с добавкой полиэтиленгликоля (PEG 600). Установлено оптимальное значение pH, равное 5, для синтеза нанопорошка γAl₂O₃ в кубической модификации с наименьшим размером кристаллитов, который составлял 20 нм. Удельная поверхность порошка составляла 131 м²/г, а размер пор 7-11 нм. С помощью ДТА установили, что температура разложения Al(OH)₃ равна 396°C. Полученные наночастицы оксида алюминия имели преимущественно сферическую форму.

В следующих работах нанопорошки Al_2O_3 получали сжиганием гелей [26, 27]. В качестве стабилизаторов золей применяли мочевину (NH₂CONH₂), глицин (NH₂CH₂COOH) или лимонную кислоту (C₆H₈O₇). Раствор нитрата алюминия перемешивали с раствором каждого из стабилизаторов золей в дистиллированной воде при весовом отношении 1:1. Полученные золи упаривали до состояния геля и прокаливали при температурах: 400, 700, 1000°С. Средний размер частиц для всех образцов, согласно расчетам по методу Шерера, составлял 9-34 нм. Порошок, полученный с применением мочевины в качестве стабилизатора золя, состоял из наночастиц со средним размером 9 нм.

Полые сферические наночастицы γ -Al₂O₃ получали плазменно-дуговым прокаливанием композита графит-Al (C/Al = 15:1, вес.) в инертном газе (He) при 950°C [28]. На микрофотографиях ПЭМ (Рис. 11) представлены наночастицы композитов графит-Al, полученных в ходе прокаливания при 400-950°C. По результатам дифференциального термического анализа, в интервале температур

400-700°С происходило окисление карбида алюминия и кристаллизация Al_2O_3 (Рис. 11*а-в*). На микрофотографии ПЭМ (Рис. 11*г*) представлены полые сферы γAl_2O_3 . Согласно данным РФА, установлено, что размер частиц, полученных при температуре прокаливания 400°С, составлял 10-30 нм, а при 950°С – 6-14 нм, при этом толщина стенки сфер составляла 2-3 нм (Рис. 11*г*).

Рис. 11. Микрофотографии ПЭМ Al₂O₃, прокаленного при 400°С (*a*), 550°С (*б*), 700°С (*в*), 950°С (*г*).

В Институте Электрофизики УрО РАН нанопорошки Al₂O₃ получали методом электровзрыва алюминиевой проволоки [29]. Полученный порошок имел фазовый состав: 20 вес.% γ-Al₂O₃/80 вес.% δ-Al₂O₃, удельную поверхность 72 м²/г и средний размер частиц 24 нм.

В работе [30] получали α-Al₂O₃, используя в качестве источников алюминия: бемит γ-AlO(OH) и аморфный оксид алюминия. Нанопорошки оксида алюминия

синтезировали в суб- и сверхкритических условиях в среде CO₂. Установлено, что для продукта, полученного из аморфного α -Al₂O₃, температура фазового перехода $\gamma \rightarrow \alpha$ на 150°C ниже, чем продукта, полученного из бемита (Схема 1).

Предложенным способом осаждения в сверхкритических условиях предложено получать оболочку α -Al₂O₃ для наночастиц Ba_xSr_{1-x}TiO₃. Блочные композиционные материалы, полученные из таких нанопорошков, относятся к сегнетоэлектрикам и применяются в системах теплового контроля, измерительной технике, в пусковых системах двигателей.

а) Бемит (H₂O/EtOH)

Схема 1. Получение αAl_2O_3 из (*a*) бемита в среде H_2O/C_2H_5OH и (*б*) аморфного $Al_2O_3 - в$ среде CO_2/C_2H_5OH .

Работа [31] посвящена анализу пористости Al_2O_3 порошков после прокаливания байерита (β - Al_2O_3 3H₂O) и гиббсита (α - Al_2O_3 3H₂O). Установлено, что для получения нанопорошка Al_2O_3 с высокой удельной поверхностью, 381 м²/г, и размером мезопор 4 нм необходимо проводить гидролиз при pH=9,4 и температуре 30°C.

Получение Al₂O₃ горением исследовали авторы работы [32]. На Рис. 12 представлены микрофотографии СЭМ порошка Al₂O₃, полученного горением при различных температурах. С помощью рентгеновской дифракции и дифференциального термического анализа установлены фазовые переходы Al₂O₃ в интервале 600-1000°C (Таблица 1). Как видно из Таблицы 1, фазовый переход в

α-Al₂O₃, сопровождаемый ростом размеров кристаллитов почти в 2 раза, имеет место при температуре 900°С.

Рис. 12. Микрофотографии СЭМ порошка Al_2O_3 , полученного при различных температурах горения: $a - 500^{\circ}$ С; $\delta - 600^{\circ}$ С; $e - 850^{\circ}$ С; $e - 875^{\circ}$ С; $\partial - 900^{\circ}$ С; $e - 1000^{\circ}$ С.

NºNº	Температура,	Средний размер	Кристаллическая
	°C	кристаллитов, нм	модификация
1	600	21	γAl_2O_3
2	850	36	γ Al ₂ O ₃
3	875	41	γAl_2O_3
4	900	70	α Al ₂ O ₃
5	1000	75	α Al ₂ O ₃

Таблица 1. Данные рентгеновской дифракции для порошков Al₂O₃

На примере наночастиц Al_2O_3 , а также композитов Al_2O_3 —Ag в работах Bala T. и A. Mukherjee [33, 34] было показано, что стабильную гексагональную фазу α- Al_2O_3 применяют в качестве антибактериального реагента в современных лекарственных препаратах. Перспективным материалом для клинических испытаний в качестве антимикробного агента является нанопорошок γ -Al₂O₃ благодаря его высокой удельной поверхности.

1.3. Оксид циркония

Оксид циркония – высокотехнологичный материал, востребованный в таких отраслях производства как: создание теплозащитных экранов космических кораблей и тормозных дисков спортивных автомобилей, катализ, стоматология, эндопротезирование [35-39]. Основной метод производства оксида циркония - это высокотемпературное разложение силиката циркония ZrSiO₄, который плавят в электродуговой печи с последующим испарением кремния. Существуют три стабильные кристаллографические модификации ZrO₂: моноклинная (до 1170°C), тетрагональная (1170-2370°С) и кубическая (2370-2680°С). При этом ZrO₂, стабилизированный в тетрагональной фазе, обладает повышенными прочностью и износоустойчивостью. В представленном обзоре мы рассмотрим «мокрые тетрагонального ZrO_{2} , методы» синтеза такие как: осаждение, микроэмульсионный, гидротермальный, золь-гель и темплатный.

Гидротермальный синтез ZrO₂ с применением ионной жидкости 1-бутил-3метилимидазолин-тетрафторбората (BMIM BF4) проведен авторами работы [40]. Хлорид цирконила использовали в качестве источника циркония. BMIM BF4 и мочевину применяли в качестве комплексообразователей. Размер частиц нанопорошка Al₂O₃ составлял 10-30 нм.

При гидротермальном синтезе ZrO₂ (250°C) в работе [41] получали нанопорошки со средним размером частиц 18-23 нм, которые имели овальную форму. По данным РФА, порошки состояли из моноклинной и тетрагональной модификаций.

Нанокристаллический ZrO₂, имеющий преимущественно тетрагональную модификацию, был синтезирован с использованием методов золь-гель и осаждения [42]. Пропилат циркония подвергали гидролизу до получения гидроксида, который затем использовали в золь-гель методе. Соль ZrOCl₂ использовали в качестве источника Zr в синтезе нанопорошка методом осаждения. На Схемах 2 и 3 показано получение нанопорошков ZrO₂. Золь гидроксида циркония сушили двумя различными способами в течение 12 ч. В первом случае сушили при 110°С, во втором случае - в вакууме (50 МБар) при температуре 70°С. Прокаливание всех ксерогелей проводили при одном режиме в интервале температур 400-700°С в течение 4 ч. Средний размер кристаллитов ZrO₂ при первом варианте сушки составлял 13 нм, при втором - 20 нм независимо от метода получения геля. По данным СЭМ, наночастицы ZrO₂, полученные зольгель методом, имели сферическую форму, а полученные методом осаждения - кубическую.

Sol-gel synthesis:

Hydrolysis $Zr(OC_3H_7)_4 + C_3H_7OH + NH_4OH \longrightarrow$ $Zr(OH)_4 + C_3H_7OH + NH_3$ Zr-n-propoxide Sol Polycondensation Zr(OH)₄ $[Zr(OH)_4]_n xC_3H_7OH xH_2O$ Sol Gel 110°C [Zr(OH)₄]_n.xC₃H₇OH.xH₂O - $Zr(OH)_4 + C_3H_7OH + H_2O$ Amorphous gel 400°C 500-700°C Zr(OH)₄ $ZrO_2 \longrightarrow ZrO_2 + ZrO_2$ (T) (T) (M)

Схема 2. Золь-гель синтез наноструктурированного ZrO₂.

Precipitation synthesis:

ZrOCl₂.8H₂O + NH₄OH ---- $Zr(OH)_4 + NH_4CI + H_2O$ → Zirconium oxychloride Precipitates 110°C Zr(OH)₄ $Zr(OH)_4 + H_2O$ Wet Dry >400°C 400°C 600-700°C $ZrO_2 \longrightarrow ZrO_2 + ZrO_2 \longrightarrow ZrO_2$ Zr(OH)₄ (T) (T) (M) (M)

Схема 3. Синтез наноструктурированного ZrO_2 методом осаждения.

В работе [43] исследовали влияние различных стабилизаторов золей (сахароза, пектин, лимонная кислота, этиленгликоль, глицерин) на дисперсность полученных порошков (Рис. 13). В раствор соли нитрата цирконила добавляли азотную кислоту до достижения рН = 1. Стабилизаторы золей добавляли к раствору прекурсора при следующих величинах весового отношения (Ct/Zr): лимонная кислота (ЛК) - 100:1, этиленгликоль (ЭГ) - 78:1, глицерин (Г) - 100:1, сахароза/пектин (СП) - 12/1/1. Нанопорошки получали прокаливанием гелей при 900°C.

Рис. 13. Влияние типа стабилизатора золя на размер частиц ZrO₂: СП сахароза/пектин, Г – глицерин, ЭГ – этиленгликоль, ЛК - лимонная кислота.

По данным РФА, нанопорошки ZrO₂ в тетрагональной модификации с размером кристаллитов 16-30 нм были получены с применением сахарозы и пектина в качестве стабилизаторов золей. Микрофотографии серии порошков ZrO₂, полученные с помощью ПЭМ, представлены на Рис. 14. Хорошо видно, что ZrO₂, полученный с применением лимонной кислоты, состоит из сферических частиц с размерами 40-50 нм (Рис. 14а). При использовании этиленгликоля или глицерина полученные порошки ZrO₂ состояли из агломератов частиц (Рис. 146 и 14в). Порошок ZrO₂, полученный с использованием сахарозы и пектина также состоял из агломератов (Рис. 14г).

Рис. 14. Микрофотографии ПЭМ нанопорошков ZrO_2 , полученных с использованием лимонной кислоты (*a*), этиленгликоля (*б*), глицерина (*в*), сахарозы и пектина (*г*).

Золь-эмульсия-гель метод использовали для получения наночастиц ZrO₂, допированных Er^{3+} [36]. Цирконий пропоксид и эрбия ацетат были использованы в качестве исходных веществ, из которых сначала получали смешанный золь с использованием ледяной уксусной кислоты и н-пропанола. Затем для получения эмульсии «вода в масле» использовали и 5%-ный сорбитан-моноолеат в циклогексане (Span 80). Объемное отношение золь/циклогексан составляло ¹/₄. После гелеобразования, центрифугирования и промывки полученный продукт подвергали сушке при 60°С и прокаливанию при 1000°С. В результате были получены наночастицы ZrO₂ с размерами менее 50 нм, допированные ионами Er^{3+} . В зависимости от содержания допанта Er^{3+} порошки состояли из смеси моноклинной и тетрагональной модификаций или кубической модификацией – при наибольшем содержании Er^{3+} .

Наночастицы ZrO₂ также получали методом обратных микроэмульсий цетилтриметиламмоний бромид/гексанол/вода [44]. Установлено, что на размер частиц ZrO₂ влияет мольное отношение H₂O/ПАВ. Так, при низкой концентрации ПАВ размер наночастиц составлял менее 20 нм. При высокой концентрации ПАВ (>0,8 моль/л) размер частиц составлял 60-150 нм.

Золь-гель метод с ультразвуковой обработкой золей описан в работе [45]. Ультразвуковую обработку проводили на стадии золеобразования (2 цикла при мощности 520 Вт) и промывки (2 цикла при мощности 600 Вт). Это позволило получить нанопорошок со средним размером кристаллитов около 10 нм. С помощью ИК-спектроскопии установлено, что применение ультразвуковой обработки позволяет предотвратить агломерацию частиц золя и снизить количество воды, координационной воды и гидроксильных групп на поверхности коллоидных частиц гидроксида циркония.

Важным свойством ZrO_2 является высокая термическая стабильность. В статье [3] проведен анализ термической стабильности пленок нестабилизированного ZrO_2 . Установлено, что при 1000°C пленки ZrO_2 имеют тетрагональную модификацию и размер кристаллитов ZrO_2 60 нм. Однако во многих других работах [46-50] при получении нанопорошков при температурах выше 800°C ZrO_2 частично возвращается в моноклинную модификацию.

Работа [51] посвящена получению нанопорошка ZrO₂ с помощью комбинированного гидротермального и золь-гель синтезов. Схема синтеза приведена на Схеме 4.

Схема 4. Синтез наноструктурированного ZrO₂ из работы [51].

Синтез нанокристаллического ZrO₂ проводили с использованием изобутанола и кислоты в качестве стабилизаторов пропионовой золя. Для повышения дисперсности ZrO₂ авторами работы предложено допирование ZrO₂ кремнием. Для этого на заключительном этапе синтеза добавляли 3-метакрилоксипропил триметоксисилан и получали ZrO₂, допированный 10 мол.% SiO₂ (Zr-Mod1). При синтезе ZrO₂, допированного 10 мол.% SiO₂ (Zr-Mod2) концентрацию изобутанола исходном растворе повышали на 10%. Согласно данным фотонной В корреляционной спектроскопии, во всей серии опытов гидродинамический диаметр частиц ZrO₂ в золе составлял около 5 нм. По данным ПЭМ, последующая гидротермальная обработка в автоклаве приводила к образованию в случае нестабилизированного ZrO_2 дискретных наночастиц (Рис. 15*a*), а в случае модифицированного ZrO_2 - смеси наночастиц ZrO_2 и SiO₂ (Рис. 156) со средним размером 7-8 нм. По данным РФА, все порошки ZrO₂, полученные в работе [51], представляли собой смесь тетрагональной и моноклинной модификаций в различных соотношениях (Рис. 16). Установлено, что ZrO₂, допированный 10 мольн.% SiO₂ (Zr-Mod1), состоял на 61 вес.% из тетрагональной модификации tP6 и на 39 вес.% из моноклинной модификации mP12. Прокаливание при 800°С Zr-Mod2-800 нанопорошка (Рис. 15c) несущественно сказывалось на дисперсности порошка (средний размер частиц составлял 12 нм), а количество тетрагональной фазы tP6 в порошке возрастало до 96 вес.%.

Рис. 15. Микрофотографии ПЭМ нанопорошков ZrO_2 : (*a*) – ZrO_2 чистый; (*б*) – ZrO_2 , допированный 10 мол.% Si (Zr-Mod1); (*c*) – ZrO_2 , прокаленный при 800°С.

Рис. 16. Рентгеновская дифракция на порошках ZrO₂: Zr-Basis – нестабилизированного ZrO₂; Zr-Mod1 и Zr-Mod2 - ZrO₂ - допированного 10 мол.% SiO₂; Zr-Mod2 (800) - Zr-Mod2, прокаленного при 800°C.

Авторами работы установлено, что для нанопорошка ZrO₂, допированного 10 мольн.% SiO₂, синтезированного золь-гель методом, температура фазового перехода из моноклинной с тетрагональную модификацию на 370°C ниже, в сравнении с микронными порошками ZrO₂.

Также ZrO_2 получали темплатным методом С применением гексадецилтриметиламмоний бромида [52], полиспиртов [53], полиметакрилатов [54, 55], цетилтетраэтиламмоний бромида агарозы [56] [57], гидроксипропилцеллюлозы [58].

Особенностью гидротермального синтеза ZrO₂ и Y₂O₃-ZrO₂, описанного в работе [59], являлось применение бицина $(C_6H_{13}NO_4)$ И пентагидрата тетраметиламмоний гидроксида в качестве комплексообразующих реагентов. Водные растворы нитратов цирконила и иттрия перемешивали с бицином в добавляли пентагидрат автоклаве. Затем К раствору тетраметиламмоний гидроксида. Полученную суспензию промывали раствором щавелевой кислоты до pH = 9. В результате получали нанопорошки ZrO_2 и Y_2O_3 - ZrO_2 в тетрагональной модификации с размерами кристаллитов 8-10 нм, микрофотографии которых приведены на Рис.17.

Рис. 17. Микрофотографии ПЭМ наночастиц $ZrO_2(a)$ и Y_2O_3 - $ZrO_2(b)$.

В работе [60] установлено влияние добавок MgO и MgO-Al₂O₃ на свойства ZrO₂. Порошок ZrO₂ синтезировали осаждением сульфата циркония с помощью NH₄OH. Добавки MgO (2,77 вес.%) и MgO-Al₂O₃ (10 вес.%) механически добавляли к порошку и перемешивали в шаровой мельнице. Затем смесь подвергали одноосному прессованию и спекали при 1600°C в течение 1 или 2 ч. По данным рентгеновской дифракции, при добавлении MgO в составе керамики ZrO₂ присутствовал в виде смеси кубической, тетрагональной и моноклинной модификаций. В случае использования добавки MgO-Al₂O₃ в исходную порошковую смесь в керамике наблюдали присутствие моноклинного ZrO₂ и кубической фазы шпинели MgAl₂O₄.

В представленной работе наиболее прочным являлся образец с добавкой MgO (2,77 вес.%). Вероятно, что при добавлении MgO-Al₂O₃ к ZrO₂ в ходе спекания формируется высокоплавкая шпинель MgAl₂O₄ в результате встраивания магния в решетку Al₂O₃. В результате этого происходит расслоение фаз ZrO₂ и MgAl₂O₄, что отрицательно сказывается на однородности размера зерен и плотности получаемой керамики. Авторы делают предположение, что неоднородность порошка также может быть вызвана применением механического перемешивания компонентов смеси.

1.4. Оксид церия

Ультрадисперсные порошки CeO₂ являются востребованным полупродуктом для производства термоэлектрических материалов, керамики, ТОТЭ [61], катализаторов, а также во многих областях порошковой металлургии [62, 63]. Анализ работ последних 10 лет показывает, что для синтеза CeO₂ используют гидротермальный, цитратный, темплатный, золь-гель, ультразвуковой методы [64], а также химическое осаждение из газовой фазы [65].

Гидротермальным методом в работе [66] получали наночастицы CeO₂ сферической формы со средним размером 89 нм. Для этого нитрат церия растворяли в смеси деионизованной воды и диэтиленгликоля (1:3, об.) и перемешивали с поливинилпирролидоном (ПВП) в мольном отношении ПВП/Ce = 0,0043. Раствор перемешивали в автоклаве в течение 24 ч при температуре 180°C и затем прокаливали полученный осадок при 500°C в течение 2 ч. Гранулометрическим методом (Рис 18*a*, *вставка*) установлено, что на 76% порошок состоял из частиц с размерами 70-110 нм. На Рис. 18*a* и *б* представлены микрофотографии СЭМ и ПЭМ сферических частиц CeO₂.

Рис. 18. Микрофотографии порошка CeO₂, полученные с помощью СЭМ (*a*), ПЭМ (б) и распределение частиц по размерам (*вставка*).

Полученные частицы по размеру были близки к субмикронным. Для повышения каталитической активности полученного порошка авторы наносили на его частицы Au, Pt или Pd. Из полученной серии наиболее активным в конверсии CO оказался Au/CeO₂, температура 50%-ной конверсии CO на нем составила 62°C.

Группа отечественных ученых во главе с Ю.Д. Третьяковым являются разработчиками технологии сублимационной сушки, которая была ими впервые использована для криохимического получения наночастиц CeO₂ [67].

В исследованиях Иванова В.К. с соавторами [68] нанопорошки CeO₂ получали методом гомогенного осаждения с применением криообработки осадков с последующей сублимационной сушкой. Установлено, что такой подход позволяет получать нанопорошки CeO₂ с более высокой дисперсностью и удельной поверхностью, чем без нее. Размер кристаллитов нанопорошка, согласно данным РФА, после прокаливания при 700°С составлял 18-24 нм.

Фундаментальные основы криохимической технологии нанодисперсных материалов изложены в книге М.Б. Генералова, где подробно освещены физикохимические особенности процессов диспергирования растворов, криокристаллизации, сублимации криогранул, десублимации растворителей, механической переработки наноразмерных порошков в изделия со специальными размерными свойствами [69].

В работах [70] и [71] нанопорошки CeO₂ получали гидротермальным методом. В качестве прекурсора Ce в работе Vantomme A. использован CeCl₃·7H₂O, а в работе Zhang D.S. - Ce(NO₃)₃. Синтез в обеих работах проводили с участием цетилтриметиламмоний бромида (ЦТАБ) в качестве структурообразующего реагента, одновременно тормозящего агломерацию частиц.

Было исследовано влияние условий синтеза: концентрации ЦТАБ, УЗ обработки и источника церия на структуру CeO₂. Соль CeCl₃·7H₂O и ЦТАБ растворяли в водном растворе H₂SO₄ при pH=2 и температуре 40°C в первом случае, а во втором Ce(NO₃)₃ растворяли в воде при непрерывном перемешивании и УЗ обработке. Затем в растворы добавляли по каплям NH₄OH (25 %) в течение

15 мин. При этом величина pH раствора изменялась от 2,0 до 11,4. Полученный раствор выдерживали в автоклаве при 80°С, а затем проводили термообработку при 550°С в среде N₂ и на воздухе. На Рис. 19*а-г* представлены микрофотографии наностержней CeO₂ шириной 10-25 нм и длиной 150-400 нм. По данным РФА, наностержни имели кристаллическую структуру флюорита. Согласно данным адсорбции-десорбции N₂, их удельная поверхность (БЭТ) составляла 54 м²/г.

изучали морфологию микропластинок СеО₂, Zhang D.S. с коллегами ПЭМ. Ha полученных гидротермальным методом также С помощью микрофотографиях (Рис. 20а-г) продемонстрировано влияние условий синтеза и состава исходной смеси на морфологию порошка. Оксид церия, полученный без применения ЦТАБ, являлся неоднородным субмикронным порошком (Рис. 20а). При мольном отношении Се/ЦТАБ = 10/1 были получены однородные микропластинки CeO₂ ромбической формы (Рис. 20б).

Рис. 19. Микрофотографии наностержней CeO₂: ПЭМ (*a*), СЭМ (*б*), ПЭМ ВР (поперечное сечение) (*в*) и ПЭМ отдельно стержня (*г*) [65].

По данным РФА, микропластинки имели гранецентрированную кубическую кристаллическую решетку. Длина ребра микропластинок составляла от 500 нм до 2 мкм, а толщина – 100-400 нм. Также в работе изучали влияние дефлегмации на морфологию микропластинок CeO₂. На микрофотографиях ПЭМ (Рис. 20*в-г*) видно, что при гидротермальном синтезе без обратного холодильника порошок представляет собой неоднородную смесь наночастиц и стержней 3-5 мкм в длину.

На Рис. 20г видно, что при синтезе с обратным холодильником в течение 1 ч происходит частичное формирование «пластинчатой» структуры порошка. Установлено, что, во-первых, при гидротермальном синтезе использование обратного холодильника способствует формированию структуры заданной морфологии, во-вторых, оптимальным для формирования однородных пластинок CeO₂ ромбической формы является мольное отношение в исходной смеси Ce/ЦТАБ, равное 10/1.

Рис. 20. Микрофотографии ПЭМ микронных порошков CeO_2 : (*a*) – полученных без ЦТАБ, (*б*) – микропластинок, полученных с применением ЦТАБ, (*в*) полученных при 60°C без обратного холодильника, (*г*) при 60°C с обратным холодильником в течение 1 ч [71].

Авторами [70] для сравнения проводился также гидротермальный синтез CeO₂ без применения ЦТАБ. Как видно на микрофотографии ПЭМ (Рис. 21), в этом случае порошок состоял преимущественно из агломератов, образованных наночастицами CeO₂. Исходя из этого, авторы делают вывод о непосредственном

участии ПАВ в формировании наностержней CeO₂. Таким образом, было установлено, что при pH>7 ЦТАБ играет роль структурообразующего агента, задавая направление роста наностержней.

Рис. 21. Микрофотография ПЭМ порошка CeO₂, полученного без применения ЦТАБ.

В работе [72] также получали наностержни CeO₂, но для этого использовали более экономичный структурообразующий агент – полиэтиленгликоль (ПЭГ) с различным молекулярным весом 200, 600, 2000, 20000. Ce(NO₃)₃×6H₂O растворяли в деионизованной воде с добавлением 1 вес.% ПЭГ, затем доводили рН среды до 10, добавляя раствор NaOH (0,005 г/мл) при перемешивании и ультразвуковой обработке в течение 2 ч. Zhang D.S с коллегами предложили схему (Рис. 22) формирования наноразмерных стержней в синтезах с участием ПЭГ. Авторы сделали вывод, что ПЭГ с высокой молекулярной массой (2000) препятствует формированию наностержней CeO₂, вследствие стерических затруднений, но приводит к формированию отдельных наночастиц с размерами

менее 10 нм. Согласно данным ПЭМ (Рис. 23), приблизительные размеры наностержней составляли: ширина 5-10 нм, длина 100-150 нм.

Рис. 22. Схема формирования наностержней CeO₂ при использовании ПЭГ и ультразвуковой обработки.

Рис. 23. Микрофотографии ПЭМ наностержней CeO₂, полученных с использованием ПЭГ в качестве структурообразующего агента.

Таким образом, авторами установлено, что одновременное использование ультразвуковой обработки и структурообразующих реагентов позволяет получать нанопорошки CeO₂ с размером кристаллитов менее 20 нм.

В работе [73] нанопорошки CeO₂ синтезировали цитратным методом с использованием лимонной кислоты (C₆H₈O₇), поливинилового спирта (Mв = 8000) и ПЭГ (Mв = 200). К раствору нитрата церия добавляли лимонную кислоту и
этиленгликоль (ЭГ) при мольном отношении ЭГ/лимонная кислота= 4/1. Авторами статьи показано, что использование в качестве комплексообразователя ПЭГ позволяет получать порошки CeO₂ со средним размером кристаллитов 8 нм и удельной поверхностью 99 м²/г, согласно данным РФА, ПЭМ и адсорбциидесорбции азота (БЭТ), соответственно.

В работе [74] проводили гидротермальный синтез CeO₂. Целью исследования было изучение влияния концентрации поливинилпирролидона (ПВП) в исходной смеси на морфологию порошков. Установлено, что с повышением концентрации ПВП в реакционной смеси дисперсность нанопорошков растет. Средний размер кристаллитов при этом уменьшается с 25 до 9 нм.

Работа [75] посвящена получению нанопорошков CeO₂ золь-гель методом. Спиртовой раствор соли церия перемешивали с щавелевой кислотой при 50°C в течение 0,5 ч. Полученный белый гель центрифугировали, промывали этанолом и сушили при 80°C. Интермедиат прокаливали при 450°C в течение 2 ч. На Рис. 24 представлены микрофотографии СЭМ и ПЭМ синтезированных слоистых мезопористых порошков CeO₂.

Рис. 24. Микрофотографии: а-в – СЭМ, г-е ПЭМ нанопорошка СеО₂.

По данным рентгеновской дифракции, для полученных порошков была характерна высокая дефектность кристаллической решетки, при этом средний размер кристаллитов составлял 10 нм. По данным адсорбции-десорбции N₂, его удельная поверхность (БЭТ) составляла 171 м²/г. По результатам исследования каталитической активности нанопорошков CeO₂ в конверсии CO, T_{50} для мезопористого CeO₂ составила 239°C.

Как известно, синтез наноструктурированного CeO₂ с заданной морфологией является трудоемким процессом, включающим несколько этапов. Выбор исходных соединений церия, (со)растворителей, структурообразующего и оптимальных условий синтеза необходим для получения нанопорошков CeO₂ с заданными морфологическими параметрами, такими как: дисперсность, фазовый состав, удельная поверхность, форма частиц. Это обусловлено тем, что для целевого использования при разработке композиционных материалов, катализаторов, мембран требуются, как правило, порошки с определенными физико-химическими свойствами.

1.5. Твердые растворы Ce_xZr_{1-x}O₂

Нанопорошки $Ce_xZr_{1-x}O_2$ являются перспективными материалами с широким спектром применения в различных инновационных технологиях производства ТОТЭ, газовых сенсоров, кислород-проводящих материалов, композитной керамики с размером зерна менее 2 мкм для медицинских целей и в катализе [76-78]. Материалы электролитов ТОТЭ должны обладать такими свойствами, как высокие плотность и кислородная емкость, а также малый размер зерна. Керамика на основе твердых растворов $Ce_xZr_{1-x}O_2$ обладает всеми выше перечисленными свойствами и, следовательно, является востребованным материалом для ТОТЭ.

В обзоре Hideo Sobukawa [79] о существующих тенденциях развития катализаторов с высокой кислородной емкостью и термостабильностью автор рассказывает о трехмаршрутных катализаторах нового поколения на основе твердых растворов Ce_xZr_{1-x}O₂. В течение последних 30 лет разработка трех-

маршрутных катализаторов на основе ZrO₂ для конверсии отходящих газов (CO, NO_x, и C_xH_v) до CO₂, H₂O и N₂ осуществлялась в три этапа: первый этап исследователи пропитывали порошок CeO₂ нитратом циркония, прокаливали при 1000°С и получали кубический твердый раствор Ce_xZr_{1-x}O₂ (x>0,8). Второй этап – использовали метод гомогенного соосаждения для получения твердых растворов с содержанием ZrO₂ до 20 мол.% для повышения термической стабильности катализатора. Третий этап _ была предложена концепция создания диффузионного барьера на границах частиц твердого раствора $Ce_xZr_{1-x}O_2$ путем введения в систему порошка Al₂O₃. Это способствовало повышению его удельной поверхности, повышало термостабильность твердых растворов Ce_xZr_{1-x}O₂ и сдерживало рост частиц при температуре работы катализатора выше 1000°С.

Работа [80] посвящена получению золь-гель методом твердых растворов $Ce_xZr_{1-x}O_2$ при x= 0, 0,2, 0,5, 0,7, 1. В качестве источников Ce и Zr использовали $(NH_4)_2Ce(NO_3)_6$ ZrOCl₂ $8H_2O$, И соответственно. Соли растворяли В деионизованной воде и добавляли 25%-ный раствор аммиака, доводя рН раствора до 10. Полученный золь подвергали УЗ обработке при одновременном нагреве до 40-50°С. По данным РФА, средний размер кристаллитов прокаленного порошка Се_xZr_{1-x}O₂ составлял 3 нм. Согласно данным РФА и EXAFS-спектроскопии, порошки $Ce_xZr_{1-x}O_2$ (x= 0, 0,2, 0,5, 0,7, 1) были неоднородны и состояли из смеси дефектных модификаций моноклинного ZrO₂ и кубического флюорита CeO₂.

В работе [81] проводили сравнение цитратного и золь-гель методов получения твердых растворов CeO₂-ZrO₂. Нитраты церия и циркония растворяли в деионизованной воде. Затем добавляли избыток лимонной кислоты C₆H₈O₇. Для получения твердого раствора CeO₂-ZrO₂ золь-гель методом использовали тетраизопропоксид циркония и нитрат церия. Растворителем для солей был изопропанол при мольном отношении изопропанол/(Ce+Zr) = 50/1. Гидролиз проводили в присутствии 65% HNO₃. Состаренный в течение 1 недели золь подвергали криообработке при температуре -40°C. Полученные гели сушили и прокаливали при 450°C и 750°C в течение 3 ч. По результатам адсорбции-десорбции N₂ (Рис. 25), удельная поверхность порошков возрастала с

увеличением содержания CeO₂ в составе твердого раствора, причем в случае зольгель метода этот рост был наиболее заметен.

Рис. 25. Удельная поверхность порошков твердого раствора CeO₂-ZrO₂, полученных золь-гель и цитратным методами, при различных содержании CeO₂ и температуре прокаливания: 450° C – a, 700° C – b.

При x>0,5 порошки твердых растворов Ce_xZr_{1-x}O₂, полученные цитратным методом, имели 100% кубическую кристаллическую модификацию, согласно данным РФА. Порошки, полученные золь-гель методом, были однофазными только при x<0,2.

Исследователи [82] получали твердые растворы состава Ce_{0,12}Zr_{0,88}O₂ цитратным методом. Нитраты циркония и церия перемешивали при мольном

отношении Ce/Zr = 12/88. Общая схема реакций получения твердых растворов $Ce_xZr_{1-x}O_2$ цитратным методом приведена на Схеме 5.

Схема 5. Цитратный метод синтеза твердого раствора Ce_{0.12}Zr_{0.88}O₂.

Сначала к раствору солей добавляли лимонную кислоту (ЛК) при мольном отношении ЛК/ Σ (Ce+Zr)= 4:1, затем этиленгликоль (ЭГ) в мольных отношениях ЛК/ЭГ = 0,2; 1; 2. Реакционную массу нагревали до 140°C и перемешивали в течение 40 мин. В ходе реакции поликонденсации формировался вязкий гель,

который подвергали термообработке при 250°С для удаления органических компонентов. Ксерогель подвергали сухому помолу в шаровой мельнице и прокаливали при 400, 600 или 800°С. Согласно расчету по формуле Селякова-Шерера, порошки имели средний размер кристаллитов 6-15 нм. По данным адсорбции-десорбции N₂, удельная поверхность твердых растворов (БЭТ) достигала 97 м²/г.

На Рис. 26 показано, что для твердых растворов $Ce_{0,12}Zr_{0,88}O_2$, прокаленных при 800°С, при увеличении мольного отношения ЛК/ЭГ от 0,2 до 2 размер кристаллитов возрастает с 11 до 15 нм, а удельная поверхность уменьшается с 50 до 15 м²/г.

Рис. 26. Влияние мольного отношения ЛК/ЭГ на размер кристаллитов (*a*) и удельную поверхность (б) порошка твердого раствора $Ce_{0,12}Zr_{0,88}O_2$; микрофотография ПЭМ твердого раствора $Ce_{0,12}Zr_{0,88}O_2$, полученного при мольном отношении ЛК/ЭГ = 0,2 и прокаленного при 600°С (*в*).

На микрофотографии ПЭМ (Рис. 26*в*) представлен нанопорошок Ce_{0,12}Zr_{0,88}O₂ со средним размером кристаллитов 7 нм. Авторы делают вывод, что представленный метод позволяет регулировать морфологические параметры нанопорошков путем изменения количественного отношения компонентов в реакционной смеси.

В работе [83] нанопорошки твердых растворов $Ce_xZr_{1-x}O_2$ (x = 0; 0,2; 0,4; 0,7; 1,0) получали модифицированным золь-гель методом. Нитраты церия и циркония растворяли и перемешивали в дистиллированной воде при комнатной температуре. Затем к смешанному раствору по каплям добавляли NH₄OH, доводя рН раствора до 9.

По данным РФА (Рис. 27), при x=1, порошок CeO₂ имел кубическую модификацию, а при x=0, ZrO₂ был представлен смесью тетрагональной и моноклинной кристаллических модификаций. При x>0,2 твердые растворы имели модификацию тетрагонально искаженного флюорита, по-видимому, в результате формирования твердого раствора замещения, где катионы Zr^{4+} (r=0,86Å) замещали катионы Ce⁴⁺ (r=1,09Å) в кубической решетке CeO₂.

Рис. 27. Рентгеновская дифракция на нанопорошках $Ce_xZr_{1-x}O_2$, где x = 0; 0,2; 0,4; 0,7; 1: t – тетрагональная, m - моноклинная, с – кубическая модификации.

Удельная поверхность (БЭТ) порошка $Ce_{0,2}Zr_{0,8}O_2$ была наибольшей в серии и составляла 47 м²/г. Его дисперсность также была самой высокой: средний размер частиц составлял 7 нм. Авторы делают вывод о том, что предложенный метод позволяет получать нанопорошки твердых растворов $Ce_xZr_{1-x}O_2$ без использования дорогостоящих стабилизаторов золей.

В работе [84] обсуждали получение CeO₂-ZrO₂ гидрозолей, которые используются в производстве твердых оксидных топливных элементов, газовых сенсоров, кислород-проводящих материалов. Совместный гидролиз смеси солей церия и циркония с суммарной концентрацией 0,08 М проводили при различных мольных отношениях Ce/Zr: 9/1, 4/1, 1/1, ¹/₄, которые выбирали на основе литературных данных. Соосаждение проводили из водного раствора аммиака при 20°С и интенсивном перемешивании, при этом величина pH составляла 9,5. Пептизацию осадка проводили азотной кислотой. В ходе пептизации осадка Се₄O₇ происходил окончательный переход церия в четырехвалентное состояние. Зависимости оптической плотности и pH золей CeO₂ от величины [H⁺]/[Meⁿ⁺] при пептизации осадков Се₄O₇ представлены на Рис. 28. Согласно приведенным данным, для получения агрегативно устойчивого церий-содержащего золя в результате перехода Ce³⁺ \rightarrow Ce⁴⁺ мольное отношение в смеси [H⁺]/[Meⁿ⁺] было 2,3 (Рис. 28*a*). При высоких значениях $[H^+]/[Me^{n+}]$ золи не имели агрегативной устойчивости. Для систем CeO₂-ZrO₂ агрегативно устойчивые золи получали при мольном отношении [H⁺]/[Meⁿ⁺] равном 2-4 (Рис. 28б). Для золей CeO₂-ZrO₂ с содержанием ZrO₂> 50 вес.% агрегативная устойчивость достигалась при мольном отношении $[H^+]/[Me^{n+}] > 2$ (Рис. 28*в*).

Рис. 28. Зависимость оптической плотности (1) и pH (2) золей CeO₂ от мольного отношения $[H^+]/[Me^{n+}]$ (*a*), (*б*); зависимости оптической плотности золей от мольного отношения $[H^+]/[Me^{n+}]$ при CeO₂/ZrO₂ = 9/1 (1), 4/1 (2) (*б*); 1/1 (3), ¹/₄ (4) (*c*).

Работа [85] посвящена темплатному методу синтеза твердого раствора

Се_{1-х}Zr_xO₂. В качестве темплата использовали суспензию SiO₂ в этиленгликоле. Синтез проводили при непрерывной УЗ обработке. На микрофотографиях ПЭМ (Рис 29*a*,*б*) представлены полученные полые сферы CeO₂ до термообработки и после. Согласно данным ПЭМ и РФА, размер частиц CeO₂ на поверхности полых сфер возрастает с 5 до >20 нм при повышении температуры прокаливания до 900°C. На следующем этапе работы авторы пропитывали порошок CeO₂ водным раствором ZrOCl₂ с добавлением этиленгликоля. На поверхность полых сфер наносили 5 и 13 мольн.% ZrO₂ (Рис 29*в,г*). После термообработки при 900-1100°C получали наночастицы твердых растворов состава Ce_{0,95}Zr_{0,05}O₂ и Ce_{0,87}Zr_{0,13}O₂. По данным РФА, полученные твердые растворы имели модификацию флюорита.

Рис. 29. Микрофотографии ПЭМ порошков $Ce_{1-x}Zr_xO_2$: CeO_2 свежеприготовленный и прокаленный при 900°C – *а*, *б*; CeO_2 , допированный 5 и 13 мольн.% ZrO_2 и прокаленный при 900 и 1100°C – *в* и *г*.

На Рис. 30 продемонстрировано влияние допирования кристаллической решетки CeO₂ оксидом циркония (3-13 мол.%) на размер кристаллитов при различных температурах прокаливания. Показано, что при х>5 мольн.% термостабильность твердых растворов повышается, и размер их кристаллитов не превышает 50 нм.

Рис. 30. Влияние температуры прокаливания на размер кристаллитов твердых растворов Ce_{1-x}Zr_xO₂.

Авторы работы [86] получали наноструктурированные твердые растворы $Ce_xZr_{1-x}O_2$ темплатным методом. В качестве темплата использовали предварительно приготовленный углеродный материал на основе нефтяного кокса с высокой удельной поверхностью (3100-3300 м²/г). Его пропитывали водными растворами нитратов церия и циркония и прокаливали при 500°C в течение 3 ч.

Прокаливание проводили в окислительной среде O_2/N_2 (15:85 об.) для удаления углеродного темплата. В результате получали твердые растворы $Ce_{0,2}Zr_{0,8}O_2$, $Ce_{0,5}Zr_{0,5}O_2$ и $Ce_{0,8}Zr_{0,2}O_2$ с удельной поверхностью до 134 м²/г. По данным ПЭМ (Рис. 31), размер частиц порошков $Ce_{0,5}Zr_{0,5}O_2$, $Ce_{0,8}Zr_{0,2}O_2$ составлял до 10 нм.

Рис. 31. Микрофотографии ПЭМ твердых растворов $Ce_{0,5}Zr_{0,5}O_2(a)$ и $Ce_{0,8}Zr_{0,2}O_2(a)$.

Метод соосаждения с использованием дикарбоскилатов применяли в работе [87]. Фумарат $ZrO(C_4H_2O_4)\cdot 2H_2O$, сукцинат ($ZrO(C_4H_4O_4)\cdot 2H_2O$), тартрат ($ZrO(C_4H_4O_6)\cdot 2H_2O$), адипат ($ZrO(C_6H_8O_4)\cdot 2H_2O$) цирконила применяли в качестве прекурсоров оксида циркония. Прекурсорами твердых растворов $Ce_xZr_{1-x}O_2$ являлись фумарат, сукцинат, тартрат и адипат цирконила, допированного оксидом церия ($Ce_{0,12}Zr_{0,88}O(C_4H_2O_4)\cdot 1,5H_2O$, $Ce_{0,12}Zr_{0,88}O(C_4H_4O_6)\cdot 2H_2O$, $Ce_{0,12}Zr_{0,88}O(C_4H_4O_6)\cdot 2H_2O$, $Ce_{0,12}Zr_{0,88}O(C_4H_4O_6)\cdot 2H_2O$, $Ce_{0,12}Zr_{0,88}O(C_4H_4O_6)\cdot 2H_2O$, $Ce_{0,12}Zr_{0,88}O(C_6H_8O_4)\cdot H_2O$).

В случае твердых растворов $Ce_xZr_{1-x}O_2$ к растворам солей $Ce(NO_3)_3$ и $ZrO(NO_3)_2$ добавляли соответствующую кислоту (фумаровую, адипиновую и т.д.). Затем растворы перемешивали с добавлением ацетона для предотвращения агломерации частиц. Полученные суспензии прокаливали при 650°C в течение 2 ч. Наиболее высокой дисперсностью обладал твердый раствор $Ce_{0,12}Zr_{0,88}O_2$, полученный осаждением адипата цирконила, допированного оксидом церия. Он имел тетрагональную модификацию, средний размер кристаллитов 13 нм и удельную поверхность 7 м²/г.

В работе [88] с помощью РФА, ПЭМ и Рамановской спектроскопии изучали механизм стабилизации кристаллической решетки ZrO₂ оксидом церия. Образцы

получали соосаждением солей церия и циркония в присутствии гексаметилентетрамина. Осадок сушили и центрафугировали. Прокаливание порошка проводили в интервале температур 600-1200°С. Установлено, что для получения 100% кубической модификации твердого раствора $Ce_xZr_{1-x}O_2$ в представленной работе необходимо допирование кристаллической решетки оксида церия оксидом циркония (35-40 вес.%). По данным РФА, средний размер кристаллитов твердого раствора $Ce_{0,6}Zr_{0,4}O_2$ при этом составляет 20 нм.

Также осаждение применяли авторы работы [89] для получения порошков $Ce_xZr_{1-x}O_2$ с высокой удельной поверхностью. Отличие метода заключалось в использовании азеотропной дистилляции осадка с н-бутанолом для удаления связанной воды. Прокаливание осадка проводили при температуре 450°C в течение 1 ч. В результате получали аморфные порошки, со средним размером частиц 23 нм, размером пор 9 нм и удельной поверхностью 127 м²/г. Относительная плотность керамики на основе таких порошков составляла >95%, а размер зерна не превышал 300 нм.

Нанопорошок $Ce_{0.5}Zr_{0.5}O_2$ получали обратных с помощью метода микроэмульсий В работах M. Fernandez-Garcia [90] 91]. Обратную И микроэмульсию «вода в масле» приготавливали из смеси водного раствора солей ZrO(NO₃)₂, Ce(NO₃)₃ и органической фазы, состоящей из гептана, гексанола, и Тритона X-100 ($C_{14}H_{22}O(C_2H_4O)_n$, n = 9–10). К водному раствору также добавляли раствор тетраметиламмоний гидроксида, после чего суспензию сушили, центрифугировали и прокаливали при 500°С в течение 2 ч. Порошок Ce_{0.5}Zr_{0.5}O₂ имел псевдокубическую модификацию и размер кристаллитов 4-7 нм, согласно данным Рамановской спектроскопии (Рис. 32б). Полученный нанопорошок $Ce_{0.5}Zr_{0.5}O_2$ имел удельную поверхность 96 м²/г. Согласно данным РФА и ПЭМ, он был однофазным и состоял из сферических частиц с размерами 5-10 нм, склонных к образованию агломератов с размерами 50-100 нм (Рис. 32).

Рис. 32. Данные ПЭМ (*a*) и рентгеновской дифракции (*б*) для нанопорошка Ce_{0.5}Zr_{0.5}O₂, полученного методом обратных микроэмульсий.

В работе [92] порошки ZrO_2 и CeO_2 смешивали механически в метаноле. Содержание CeO_2 в смеси составляло 0, 2, 5, 8, 10, 12, 15 мольн.%. На основе смеси формировали заготовки, которые затем спекали при 1650°C в течение 5 ч. В ходе спекания формировался твердый раствор с брутто-формулой $Ce_xZr_{1-x}O_2$.

По данным РФА, при содержании CeO_2 в твердом растворе $Ce_xZr_{1-x}O_2$ равном 0, 2, 5, 8 мольн.% порошки состояли из моноклинной модификации, при x= 15 мольн. % - тетрагональной модификации, а при х = 10, 12 мольн.% - смеси тетрагональной и моноклинной модификаций. Впоследствии проводили изучение фазовых переходов твердых растворов $Ce_xZr_{1-x}O_2$ ИЗ моноклинной В тетрагональную, и затем - в кубическую модификацию, согласно диаграмме состояния (Рис. 33*a*). На схеме (Рис. 33*б*) показано, как при фазовых переходах происходит перераспределение кислорода (О1) в узлах кристаллической решетки с повышением температуры от 500°С (моноклинная) до 1200°С (тетрагональная) и до 1650°С.

Рис. 33. Фазовая диаграмма твердого раствора $Ce_xZr_{1-x}O_2$ (*a*) и расположение атомов в ячейке для моноклинной, тетрагональной и кубической модификаций (б).

Работа [93] посвящена получению $Ce_xZr_{1-x}O_2$ путем полимеризации комплексным методом [94]. Нитрат церия и хлорид цирконила растворяли в воде, с добавлением азотной кислоты, глицина и этиленгликоля. Раствор упаривали при 110°С до образования вязкого полимерного геля, который затем сушили под 140°С. Прокаливание полученного ксерогеля инфракрасной лампой при проводили при 600°С в течение 16 ч. По данным РФА, размеры кристаллитов Се_xZr_{1-x}O₂ составляли 8-16 нм, что соответствовало результата ПЭМ высокого разрешения (Рис. 34). По данным ДТА анализа, температура кристаллизации $Ce_xZr_{1-x}O_2$ составила 250°С.

В работе [95] проводится сравнение методов микроволнового сжигания геля и соосаждения для получения твердых растворов $Ce_{0,5}Zr_{0,5}O_2$ и $Ce_{0,75}Zr_{0,25}O_2$. По данным РФА, однофазный порошок, полученный методом соосаждения, имел состав $Ce_{0,75}Zr_{0,25}O_2$, а методом микроволнового сжигания гелей - состав $Ce_{0,5}Zr_{0,5}O_2$. Нанопорошки $Ce_{0,75}Zr_{0,25}O_2$ и $Ce_{0,5}Zr_{0,5}O_2$ находились в кристаллической модификации флюорита.

51

Рис. 34. Микрофотография, полученная с помощью ПЭМ ВР, электронограмма (вставка) для нанопорошка Ce_{0.4}Zr_{0.6}O₂.

По данным РФА, порошок $Ce_{0,75}Zr_{0,25}O_2$, полученный соосаждением и прокаленный при 500°С, был аморфным. По данным ПЭМ, размер кристаллитов в порошке твердого раствора $Ce_{0,5}Zr_{0,5}O_2$, полученного микроволновым спеканием, составлял 10-40 нм, при этом значительная доля порошка состояла из агломератов с размерами 200-300 нм (Рис. 35).

Помимо «мокрых» методов порошки Ce_xZr_{1-x}O₂ получали распылительным пиролизом аэрозолей оксидов церия и циркония [96, 97], а также механической активацией перемешиванием в шаровой мельнице порошков оксидов церия и циркония [98].

Рис. 35. Микрофотография ПЭМ твердого раствора Ce_{0,5}Zr_{0,5}O₂, полученного микроволновым сжиганием геля, и дифракция электронов (вставка).

Твердые растворы состава $Ce_{0,08}Zr_{0,92}O_2$ получали плазменным искровым спеканием. Порошки CeO_2 и ZrO_2 механически перемешивали в шаровой мельнице, одноосно прессовали цилиндрические заготовки и спекали в вакууме при температуре 1300°C без выдержки. Скорость нагрева при искровом плазменном спекании составляла 150°C/мин. Также в работе проводили горячее прессование твердого раствора $Ce_{0,08}Zr_{0,92}O_2$ в потоке N_2 под давлением 20 МПа и температурах 1300-1500°C.

Показано, что плазменным искровым спеканием при 1300°С получена керамика высокой плотности 5,97 г/см³, но неоднородного фазового состава, представляющего собой смесь тетрагональной фазы CeO₂ и моноклинной фазы ZrO₂. В результате горячего прессования плотность керамики достигала 5,8 г/см³. По данным РФА, полученный твердый раствор Ce_{0,08}Zr_{0,92}O₂ имел модификацию тетрагонально искаженного флюорита.

Таким образом, при получении наноструктурированных однофазных твердых растворов $Ce_xZr_{1-x}O_2$ исследователи сталкиваются с целым рядом трудностей. Например: (1) фазовое расслоение твердых растворов, (2) выбор оптимального состава твердого раствора $Ce_xZr_{1-x}O_2$, (3) выбор условий синтеза, таких как УЗ обработка, рН, природа источника металла, концентрация исходных растворов солей.

1.6. Нанокомпозиты на основе оксида алюминия

Помимо получения наноструктурированных оксидов Се, Al, Zr исследователи уделяют все большее внимание синтезу нанокомпозитов. Это может быть обусловлено уникальными конструкционными и функциональными свойствами керамики на основе перечисленных выше оксидов [99]. К примеру, механические характеристики медицинской керамики фирмы CeramTec на основе наноструктурированных ZrO₂-Al₂O₃, приведены в Таблице 2.

Таблица 2. Механические свойства керамики фирмы CeramTec состава:

$17 \text{ Bec.}\% \text{ ZrO}_2,$	81,6	вес.%	Al_2O_3 ,	1,4	вес.% Д	цp.	оксиды
------------------------------------	------	-------	-------------	-----	---------	-----	--------

Плот-	Размер	Прочность	Модуль	Трещино-	Твердость
ность,	зерна,	на изгиб,	упругости	стойкость Е _{1с} ,	ГПа
г/см ³	МКМ	МПа	(Е), ГПа	$M\Pi a/м^2$	
4,37	0,56	1384	358	6,5	19

Для получения керамики высокой прочности и трещиностойкости необходимо отработанной порошковых обладать тщательно методикой синтеза полупродуктов. Согласно фазовой диаграмме для бинарной системы ZrO₂-Al₂O₃, приведенной на Рис. 36, Al₂O₃ в крупнокристаллическом состоянии обладает ограниченной растворимостью решетке ZrO_{2} . Изучению взаимной В

растворимости нанопорошков Al₂O₃ и ZrO₂ друг в друге и их свойств посвящается целый ряд работ современных исследователей.

Рис. 36. Равновесная фазовая диаграмма композита для ZrO₂-Al₂O₃ [100].

Работы [101, 102] посвящены получению композитов ZrO_2 -Al₂O₃ с помощью модифицированного золь-гель метода. Водные растворы (0,5M) нитрата алюминия и хлорида цирконила перемешивали при комнатной температуре. Затем по каплям добавляли NH₄OH в объемном отношении 1:1 до pH=9. Гель подвергали старению при комнатной температуре в течение 48 ч и прокаливали в интервале температур 200-1400°C. По данным РФА, полученные порошки состава 15 вес.% ZrO₂-Al₂O₃ имели средний размер кристаллитов 20 нм. Композит состоял из моноклинного и тетрагонального ZrO₂ и корунда α Al₂O₃. По данным рентгеновского картирования по элементам (Рис. 37), ZrO₂ в матрице Al₂O₃

распределен равномерно. По данным ПЭМ и гранулометрии, установлено наличие в составе порошка агломератов с размерами до 180 нм.

Рис. 37. Рентгеновское картирование композита 15 вес.% $ZrO_2-Al_2O_3$ по элементам: Al (*a*) и Zr (δ).

Исследование влияния скорости добавления растворителя И воды В реакционную смесь на морфологию ZrO₂-Al₂O₃ композита (1:1, мольное) проводили авторы работы [103]. В качестве прекурсора Al использовали нбутилат алюминия, а прекурсором Zr являлся н-пропилат циркония. В качестве органических растворителей использовали этанол, изопропанол или изобутанол. Прекурсоры отдельно растворяли в безводном органическом растворителе (этаноле, изопропаноле или изобутаноле) под азотом и перемешивали 20 мин. каждый. Растворы сливали и перемешивали еще 2 ч. Затем с различной скоростью добавления (0,06; 0,1; 0,15 и 0,26 мл/мин) в смесь вводили 65%-ный водный раствор HNO₃. Полученный при этом осадок отделяли и сушили, затем его прокаливали при 700°С в течение 2 ч. Синтезированные нанопорошки обладали развитой удельной поверхностью (БЭТ), согласно данным адсорбции десорбции N_2 . Таблица 3 показывает, что самой высокой удельной поверхностью, 240 м²/г, обладал нанопорошок ZrO₂-Al₂O₃, полученный с применением этанола в качестве растворителя при скорости добавления азотной кислоты 0,06 мл/мин. Большой

объем пор, 0,54 см³/г, получали при использовании изопропанола в качестве растворителя. Микроструктура нанопорошков, полученных с разными скоростями добавления HNO₃, представлены на Рис. 38*a*,*б*. Показано, что нанопорошок ZrO₂-Al₂O₃, полученный при самой низкой скорости добавления кислоты, равной 0,06 мл/мин, являлся более однородным.

Solvent	Water addition rate mL/min	$\frac{S_{\text{BET}}}{(m^2/g)}$	Dp (Å)	Vp (cm ³ /g)
CH ₃ CH ₂ OH	0.06	240	69	0.47
	0.1	230	60	0.45
	0.15	205	53	0.43
	0.26	165	48	0.41
H ₃ C CH ₃	0.06	233	88	0.54
	0.10	221	76	0.52
	0.15	200	54	0.48
	0.26	152	73	0.42
H ₃ C OH	0.06	201	88	0.45
	0.1	198	81	0.40
	0.15	185	80	0.35
	0.26	164	77	0.32

Таблица 3. Морфологические параметры нанокомпозитов ZrO₂-Al₂O₃

Рис. 38. Микрофотографии, полученные методом СЭМ, нанокомпозитов ZrO₂-Al₂O₃, синтезированных при различных скоростях добавления этанола: 0,06 мл/мин. (*a*) и 0,26 мл/мин. (*б*).

Авторы работ [104, 105] получали нанокомпозит 5 вес.% ZrO_2 -Al₂O₃ пропиткой суспензии α -Al₂O₃ с размером кристаллитов 150 нм водным раствором хлорида цирконила. Смесь перемешивали в течение 96 ч, величина pH раствора при этом составляла 5,8. Суспензию подвергали распылительной сушке и прокаливанию при 600-800°C. Полученный порошок исследовали с помощью светло- и темнопольной ПЭМ (Рис. 39*a*,*б*). На Рис. 39*б*, отчетливо видны белые наночастицы ZrO₂ размерами примерно 20 нм на поверхности агрегатов α -Al₂O₃.

Рис. 39. Микрофотография ПЭМ порошка 5 вес.% ZrO_2 -Al₂O₃ на светлом поле (*a*); на темном поле (*б*).

В работе [106-109] получали нанокомпозиты $ZrO_2-Y_2O_3-CeO_2-Al_2O_3$ гидротермальным методом. Порошки синтезировали соосаждением гидроксидов Al, Ce, Zr, Y с использованием NH₄OH. Последующую гидротермальную обработку осадка проводили в автоклаве при 210°C. После прокаливания осадка при 600°C получали субмикронные порошки. В результате совместного осаждения получали смесь, состоящую из фазы α -Al₂O₃ в форме пластинок и тетрагонального твердого раствора CeO₂-Y₂O₃-ZrO₂. Из субмикронных порошков

приведенного состава с размерами частиц 100-150 нм получали керамику высокой прочности и плотности.

Результаты исследования влияния температуры спекания на плотность и микроструктуру керамики 15 вес.% ZrO₂/85 вес.% Al₂O₃ представлены в работах [110, 111]. Растворы Al, Zr, Y в HCl (0,8 M) перемешивали и добавляли осадитель - 25%-ный NH₄OH. Полученный гель промывали аммиачной водой для удаления хлорид-иона. Прокаливание геля проводили при 120-1600°С. По данным РФА, Al₂O₃ претерпевал три фазовых перехода и при 1150°C переходил в стабильную модификацию α-Al₂O₃, а ZrO₂ состоял из смеси моноклинной и тетрагональной модификаций. Композит имел размер кристаллитов до 52 нм. В ходе компактирования нанопорошковых смесей данной работе было В продемонстрировано влияние температуры прокаливания нанопорошка на плотность керамики на его основе. При температурах прокаливания <1000°С удельная поверхность нанопорошка (БЭТ) была >70 м²/г, а, следовательно, высокая пористость была причиной низкой плотности керамики. В порошках, прокаленных при температурах >1000°C, в ходе рекристаллизации произошло заполнение внутренних пор и узких каналов. Авторы делают вывод, что для достижения высокой плотности и малого размера зерна керамики необходимо прокаливание порошка, полученного представленным способом, при температурах не ниже 1200°С.

В статье [112] мезопористый γAl_2O_3 , допированный CeO₂, ZrO₂ и Ce_xZr_{1-x}O₂, получали темплатным методом. Темплат готовили на основе трехблочного P123 $(HO(CH_2CH_2O)_{20}(CH_2CH(CH_3)O)_{70}(CH_2CH_2O)_{20}H),$ сополимера растворенного в безводном этаноле с добавлением HCl. Изопропилат алюминия, ацетаты церия и/или циркония добавляли к полученному раствору темплата при интенсивном перемешивании. Полученные гели подвергали ступенчатой термообработке: сначала повышали температуру со скоростью 1°С/мин. до 400°С, выдерживали при этой температуре в течение 4 ч. Затем подъем температуры продолжали со скоростью 10°С/мин до 1000°С и выдерживали при этой температуре в течение 1 ч. По данным рентгеновской дифракции (Рис. 40),

мезопористый Al₂O₃ состоял из смеси γ - и α -Al₂O₃. Средний размер кристаллитов, согласно расчету по методу Шерера, составлял для порошков: Al₂O₃ - 31 нм, CeO₂-Al₂O₃ - 21 нм, ZrO₂-Al₂O₃ - 24 нм и Ce_xZr_{1-x}O₂-Al₂O₃ - 7 нм. Общее содержание допантов CeO₂, ZrO₂ и Ce_xZr_{1-x}O₂ составляло 8 мол.%.

Рис. 40. Рентгеновская дифракция на прокаленных при 1000°C порошках мезопористого $\gamma Al_2O_3(a)$, допированного CeO₂ (δ), ZrO₂ (ϵ), CeO₂-ZrO₂ (ϵ).

По данным ПЭМ и адсорбции-десорбции азота (Рис. 41 и 42), полученные порошки являлись мезопористыми. Изотермы адсорбции-десорбции азота относились к IV типу, для которого характерны цилиндрические поры. Диаметр пор, допированных оксидами церия и циркония порошков, составлял около 4 нм (Рис. 42).

Показано, что допирование мезопористого γAl_2O_3 оксидами церия и циркония позволяет повысить температуру фазового перехода на 150°С, согласно данным

ДТА. Таким образом, удавалось повысить термостабильность α-Al₂O₃ путем введения допирующих добавок, сохраняя при этом его мезопористую структуру.

Рис. 41. Микрофотографии ПЭМ мезопористого γAl_2O_3 (*a*), допированного CeO₂ (*б*), ZrO₂ (*в*), CeO₂-ZrO₂ (*г*).

Рис. 42. Результаты адсорбции-десорбции азота и распределение пор по размерам для нанопорошков мезопористого γAl_2O_3 (*a*), γAl_2O_3 , допированного CeO₂, (*б*), ZrO₂ (*в*) и CeO₂-ZrO₂ (*г*).

Методом осаждения получали наноструктурированный композит состава 15 вес.% ZrO_2 - Al_2O_3 в работе [113]. Хлорид цирконила растворяли при перемешивании в дистиллированной воде при комнатной температуре. Гель $Zr(OH)_4$ получали путем добавления аммиачной воды к раствору соли циркония и промывали водным раствором аммиака до pH=10. Затем добавляли порошок α - Al_2O_3 и полиэтиленгликоль для предотвращения агломерации частиц. Смесь обрабатывали в шаровой мельнице в течение 24 ч, промывали этанолом и сушили при 110°C. Последующее прокаливание проводили при 600°C в течение 2 ч.

Согласно данным РФА (Рис. 43), композит был представлен смесью тетрагонального ZrO_2 и кубического α -Al₂O₃. Средний размер кристаллитов композита составлял 9 нм, что согласуется с данными ПЭМ (Рис. 44). Полученные порошки прессовали холодным изостатическим методом при 200 МПа и спекали при температуре 1500°C в течение 2 ч. Как видно на Рис. 45, максимальная относительная плотность керамики состава 15 вес.% ZrO_2 - Al₂O₃, равная 98%, прочность на изгиб, равная 932 МПа, были достигнуты при температуре спекания 1425°C.

Рис. 43. Рентгеновская дифракция порошка композита 15 вес. % ZrO₂ - Al₂O₃

Рис. 44. Микрофотография ПЭМ композита 15 вес. % ZrO2 - Al2O3

Рис. 45. Влияние температуры спекания состава 5 вес.% ZrO₂ - Al₂O₃ на относительную плотность керамики.

Работа [114] посвящена изучению влияния метода получения порошкового композита 0-15 вес.% $ZrO_2 - Al_2O_3$ на трещиностойкость керамики. Композиты получали механическим перемешиванием водных суспензий α -Al₂O₃ и ZrO₂ в мельнице с кольцевым зазором. Средний размер кристаллитов порошка α Al₂O₃ составлял 490 нм, а ZrO₂ - 470 нм. После перемешивания суспензию подвергали распылительной сушке с шариками высокочистого Al₂O₃ диаметром 3 мм.

Для сравнения в работе приводится модифицированный коллоидный метод получения порошка 7-15 вес.% $ZrO_2 - Al_2O_3$. Суспензию α -Al₂O₃ в 99,97% этаноле перемешивали с раствором 70 вес.% изопропилата циркония и этанола. Смесь прокаливали при 850°C в течение 2 ч и обрабатывали в мельнице аналогично первому методу. На Рис. 46 представлено распределение частиц по размерам для порошков, полученных механическим перемешиванием и модифицированным коллоидным методом. Как видно, модифицированный коллоидный метод обеспечивает более узкое распределение по размеру частиц. На этом основании коллоидный метод был выбран для получения более мелких частиц (400 нм) с узким распределением частиц по размеру.

Рис. 46. Распределение частиц по размерам для композитов, полученных механическим перемешиванием и модифицированным коллоидным методом.

По результатам испытаний на трещиностойкость керамики $ZrO_2-Al_2O_3$, установлено, что наиболее устойчив к трещинам ($K_{IC}=5,9\pm0,2$ МПа/м²) состав: 10 вес. % $ZrO_2-Al_2O_3$.

Авторы работы [115] методом соосаждения синтезировали композиты состава 8 мол.% ZrO_2 - Al_2O_3 и 11 мол.% ZrO_2 - Al_2O_3 . К водным растворам нитратов алюминия и цирконила добавляли 1М раствор NH₄OH. Осаждение проводили на ледяной бане при 0°C и pH=9-10. В случае изучения влияния УЗ обработки осаждение проводили в УЗ ванне мощностью 50 Вт без механического перемешивания. Осадки промывали дистиллированной водой до нейтрального pH=7. К суспензии добавляли изопропиловый спирт и сушили при 120°C. Прокаливание порошков проводили по ступенчатому графику с двумя изотермическими участками: 400 и 900°C. По данным РФА, в порошках кристаллиты имели размеры не более 19 нм. Согласно исследованию гелей на оптическом микроскопе, авторами сделан вывод об увеличении числа агрегатов при синтезе 11 мол.% ZrO_2 - Al_2O_3 композита в УЗ ванне. Вероятно, это связано с

разрушением сольватных оболочек в ходе УЗ обработки и последующей коагуляцией частиц за счет высокой поверхностной энергии.

В другой работе [116] тех же авторов установлено влияние концентрации исходных солей нитратов Al, Ce, Y на дисперсность композита $ZrO_2-Y_2O_3-Ce_2O_3$. Так, при повышении концентрации нитратов алюминия и циркония в водных растворах от 0,01 до 0,85М наблюдали укрупнение кристаллитов композита от 50 до 75 нм. Как видно на Рис. 47, для получения наиболее прочной керамики составов 9 мол.% $Ce_2O_3 - 91$ мол.% ZrO_2 и 6 мол.% Y_2O_3 - 6 мол.% Ce_2O_3 - 88 мол.% ZrO_2 необходимо располагать порошковыми полупродуктами с размером кристаллитов не более 100 нм.

Гусаров В.В. с соавторами [117] исследовали формирование в гидротермальных условиях нанокомпозита ZrO_2 -Al₂O₃, используя в качестве исходных смешанную суспензию ZrO_2 и Al(OH)₃. Установлено, что полученный композит состоял из нанокристаллов ZrO_2 , сохранивших свои изначальные размеры даже после термообработки при 1100°C, и рентгеноаморфного Al₂O₃. Однако в статье не обсуждается количественное отношение этих двух фаз, которое, как известно, также может вносить свои коррективы в процесс формирования композита.

Рис. 47. Влияние размера кристаллитов исходных порошковых композитов $Ce_2O_3 - ZrO_2$ и Y_2O_3 - Ce_2O_3 - ZrO_2 на прочность керамики при трехточечном изгибе; n – размер частиц порошка.

В работе [118] представлен плазмохимический метод синтеза композитов ZrO₂-Al₂O₃. Порошки получали термическим разложением нитратов алюминия и цирконила в плазме. Показано, что допирование оксида алюминия диоксидом циркония позволяет повысить дисперсность нанокомпозита на 30%. С использованием РФА установлено, что при данном методе синтеза ZrO₂-Al₂O₃ композит представлен неравновесной тетрагональной модификацией.

Работа [119] посвящена синтезу порошков твердого раствора CeO_2 -ZrO₂ и спеканию керамики на их основе. Порошок получали с помощью соосаждения аммиаком водных растворов хлорида цирконила и нитрата церия при pH=9. Средний размер частиц, по данным ПЭМ (Рис. 48), был близок к 10 нм. Полученные порошки прессовали при 87 МПа и спекали при 1500°C в течение 3 ч. Микрофотографии СЭМ поверхности керамики 11 мол.% CeO_2 -ZrO₂ и 2 мол.% MgO -10 мол.% CeO_2 -ZrO₂ представлены на Рис. 49. Показано, что использование порошка твердого раствора, допированного 1 мол.% Y_2O_3 или 2 мол.% MgO, позволяет получить керамику с размером зерна около 1 мкм (Рис. 496).

Рис. 48. Микрофотография ПЭМ нанопорошка твердого раствора 12 мол.% CeO₂-ZrO₂.

Рис. 49. Микрофотографии СЭМ керамики следующих составов: 11 мол.% CeO₂-ZrO₂ (*a*) и 2 мол.% MgO -10 мол.% CeO₂-ZrO₂ (*б*).

1.7. Заключение

По результатам литературного поиска ясно, что синтез и исследование свойств оксидов алюминия, циркония и церия вызывает повышенный интерес большого числа научных коллективов и технологических групп. Композиты на основе востребованными оксидов алюминия, циркония церия являются И полупродуктами для производства: материалов имплантатов, экологических катализаторов, ТОТЭ, сажевых фильтров, адсорбентов, газовых сенсоров, мелкозернистой конструкционной керамики. Однако при всем многообразии методов слабо освещены такие вопросы как влияние условий синтеза и природы прекурсоров на морфологию композита, взаимосвязь микроструктура-свойства при формировании композитов на основе твердых растворов, механизмы формирования нанокомпозитных структур. Так, на конференции Sol-gel 2015 в Киото, Япония U. Schubert [120-122] представлял золь-гель синтез с применением гетеробиметаллических прекурсоров, который является одним ИЗ новых направлений в золь-гель технологии. Тем не менее, важными показателями технологической приемлемости метода синтеза являются его экономичность, трудоемкость, стоимость оборудования, «мягкие» условия синтеза, возможность организовать замкнутый цикл, его экологическая безопасность. Для создания

способа, удовлетворяющего всем этим требованиям, необходимо разработать научные основы синтеза актуальных нанопорошковых полупродуктов, предназначенных для разработки на их основе керамических изделий нового поколения.

Глава 2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Синтез наночастиц простых оксидов 2.1.1. Оксид алюминия

В качестве источника алюминия использовали девятиводный нитрат алюминия Al(NO₃)₃×9H₂O (ГОСТ 3757-75). Для получения растворов использовали деионизованную воду, полученную на установке RAIFIL, качество которой соответствовало ГОСТ 6709-72 (удельная проводимость <1 мкСм/см). Соль растворяли в воде при перемешивании (400-600 об./мин.) и подогреве на магнитной мешалке при 85°С в течение 40 мин. Концентрация нитрата алюминия исходном растворе составляла 0,2-0,3М. В качестве образователей и В стабилизаторов золей (Ст) были использованы моноэтаноламин HOC₂H₄NH₂ (МЭА) фирмы ЭКОС-1 (ТУ 2632-094-44493179-04), N,N-диметилоктиламин $CH_3(CH_2)_7N(CH_3)_2$ (ДМОА) фирмы Aldrich, гексаметилентетрамин (ГМТА) фирмы Лабтех при мольном отношении $C_T/Al = 0.5 \div 3.0$. Величину pH реакционной смеси в ходе синтеза контролировали с помощью pH-Метра pH-150МИ (Измерительная техника, ИТ). В начале синтеза pH составлял 7,00-9,00±0,05. В одном из экспериментов алюминий-содержащий золь, полученный при отношении MЭА/Al=3, подвергали старению продолжительностью от 1 недели до 5 месяцев. При термообработке гелей использовали ступенчатый график нагрева с изотермой при 900°С ($\tau = 1 \div 9$ ч). Всего было получено 37 образцов порошков Al₂O₃.

2.1.2. Оксид циркония

В качестве источника циркония использовали двуводный нитрат цирконила ZrO(NO₃)₂×2H₂O (ТУ 6-09-140676) или восьмиводный хлорид цирконила ZrOCl₂×8H₂O (ТУ 71-085-39-2001). Соль растворяли в деионизованной воде при перемешивании (400-600 об./мин.) и подогреве на магнитной мешалке при 8590°С. Концентрацию исходных солей циркония в исходном растворе изменяли от 0,05 до 1,2М. В качестве стабилизаторов золя использовали МЭА или тетраэтиламмоний гидроксид (C_2H_5)₄NOH (ТЭАГ) фирмы Fluka при мольном отношении Ct/Zr = 0,5-2,0. В начале синтеза pH реакционной смеси составлял 8,00-9,00±0,05. Свежеприготовленный гель прокаливали в муфельной печи согласно ступенчатому графику нагрева с изотермами при 500, 600 или 800°С продолжительностью 1 ч. Всего получили 36 образцов порошков ZrO₂.

2.1.3. Оксид церия

В качестве источника церия использовали шестиводный нитрат церия $Ce(NO_3)_3 \times 6H_2O$ (CAS10277-43-7). 0,05М Раствор нитрата церия перемешивали (400 об./мин.) и нагревали при температуре 88-90°С в течение 40 мин. Параллельно приготавливали спиртовой раствор ацетилацетона и стабилизатора золя ДМОА при перемешивании на магнитной мешалке (300 об./мин.) и подогреве до 87-90°С в течение 20 мин. Раствор охлаждали до 70°С, после чего в него добавляли 60 мл этанола и перемешивали в течение 20 мин. Полученные растворы соединяли и перемешивали полученную смесь при температуре 90°С в течение 40 мин. (300 об./мин.). Мольное отношение ДМОА/Се в растворе составляло 0,67 или 2,0. В начале синтеза рН реакционной смеси составлял 8,00-8,50±0,05. Синтезированные золи прокаливали при 500°С в течение 2 ч. В результате получено 3 порошка CeO₂.

2.1.4. Криохимический синтез СеО2

Схема криохимического синтеза CeO₂ приведена на Рис. 50. Водный раствор нитрата церия, спиртовой раствор ацетилацетона (AcAc) и стабилизатора золя ДМОА получали согласно пункту 2.1.3. настоящей главы. Затем растворы соединяли и перемешивали, полученный золь выдерживали при температуре 90°C в течение 40 мин. также при перемешивании (300 об./мин.). Мольное отношение

ДМОА/Се в коллоиде составляло 0,67 или 2,0. Золи распыляли с использованием гидравлической струйной форсунки с завихрителем, направляя факел в жидкий азот (-196°С), где происходила криогрануляция. Затем гранулы подвергали вакуум-сублимационной сушке (≤3×10⁻² мм. рт. ст., 80-100°С) и в результате получали порошок криоаэрогеля, который затем прокаливали при 500°С на воздухе в течение 3 ч. В результате было получено 2 порошка СеО₂.

Рис. 50. Блок-схема криохимического синтеза наночастиц CeO₂

2.1.5. Оксид магния

В качестве источника магния использовали шестиводный нитрат магния $Mg(NO_3)_2 \times 6H_2O$ (ГОСТ 11088-75). Соль растворяли в воде при перемешивании (400-600 об./мин.) и подогреве на магнитной мешалке при 85°C в течение 40 мин. В качестве стабилизатора золя использовали МЭА при мольном отношении MЭA/Mg = 2,0. При термообработке геля использовали ступенчатый график нагрева с изотермой при 500°C продолжительностью (τ) 1 ч. Было получено 2 порошка MgO.
2.2. Твердые растворы Ce_xZr_{1-x}O₂

При синтезе наночастиц твердого раствора Ce_xZr_{1-x}O₂ количество оксида церия в твердом растворе изменяли в интервале значений: 0,03<x<16. В качестве источников церия использовали Ce(NO₃)₃×6H₂O (ТУ 6-09-4081), циркония цирконила $ZrO(NO_3)_2 \times 2H_2O$ (TV 6-09-140676) двуводный нитрат или восьмиводный хлорид цирконила ZrOCl₂×8H₂O (ТУ 71-085-39-2001). Соли церия и циркония растворяли в деионизованной воде и перемешивали (400-600 об./мин.) при подогреве на магнитной мешалке при 85-90°С. Концентрация соли церия в исходном растворе составляла 0,05М. Концентрацию солей циркония изменяли от 0,4 до 0,8М. В качестве стабилизаторов золя использовали МЭА или ТЭАГ фирмы Fluka при мольном отношении $CT/(Ce+Zr) = 0.5 \div 2.0$. В начале синтеза pH составлял 7,00-7,30±0,05 в случае ТЭАГ и 8,00-8,20±0,05 – в случае МЭА. Свежеприготовленный гель прокаливали согласно ступенчатому графику нагрева с изотермой при 500°С продолжительностью 1 ч. Для твердого раствора $Ce_{0.06}Zr_{0.94}O_2$ проводили изотермическое прокаливание при 500°C в течение 21 ч. Всего получили 43 порошка $Ce_x Zr_{1-x}O_2$ при $0,03 \le x \le 16$.

2.3. Синтез композитных наночастиц 2.3.1. Двухфазные наночастицы с брутто-формулой MgO-Al₂O₃

На первом этапе синтезировали нанопорошок γAl₂O₃ согласно пункту 2.1.1. К 0,2М раствору Al(NO₃)₃ добавляли стабилизатор золя МЭА при перемешивании со скоростью 500-600 об./мин. при 90°С в течение 1 ч. Мольное отношение МЭА/Al в реакционной смеси составляло 2. Синтезированный золь упаривали при температуре 92-93°С и перемешивании при скорости 500 об./мин. до состояния геля, который затем прокаливали в муфельной печи при 900°С в течение 1 ч.

На втором этапе получали нанопорошок с брутто формулой MgO-Al₂O₃, содержащий 0,3, 0,5, 1 или 3,0 вес.% MgO. Для этого сначала 0,05M раствор Mg(NO₃)₂ в деионизованной воде перемешивали на магнитной мешалке (400

об/мин.) в течение 40 мин. при 90°С. Одновременно подготавливали суспензию из синтезированного нанопорошка γAl_2O_3 и деионизованной воды на магнитной мешалке (600 об./мин.) в течение 40 мин. при 90°С.

К 0,05М раствору нитрата магния добавляли МЭА и перемешивали при 90°С со скоростью 500-600 об./мин. в течение 10 мин. Мольное отношение МЭА/Мg в реакционной смеси составляло 2. Затем к полученному золю добавляли водную суспензию Al_2O_3 и перемешивали при скорости 600 об./мин. и 90°С еще 1 ч. Синтезированный золь упаривали при температуре 92-93°С и перемешивании со скоростью 600 об./мин. до геля, который затем прокаливали в муфельной печи при 500°С в течение 1 ч. Всего получили 22 нанопорошка с брутто формулой MgO-Al₂O₃.

2.3.2. Трехфазные наночастицы Ce_{0.09}Zr_{0.91}O₂/MgAl₆O₁₀/γAl₂O₃

Синтез $Ce_{0.09}Zr_{0.91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ композитных наночастиц состава осуществляли в несколько этапов. Блок-схема способа их получения представлена на Рис. 51. На первом этапе был получен композитный нанопорошок MgO-Al₂O₃ согласно параграфу 2.3.1. настоящей главы. На втором этапе получали порошок состава: 18-20 вес.% Се_{0.09}Zr_{0.91}O₂ и 80-82 вес.% MgO-Al₂O₃. Исходный 0,05М раствор Ce(NO₃)₃ получали следующим образом: в деионизованной воде растворяли гексагидрат нитрата церия Ce(NO₃)₃×6H₂O при перемешивании на магнитной мешалке (400 об./мин.) и температуре 90°С в течение 20 мин. 0,5М Раствор соли циркония в деионизованной воде приготавливали отдельно, используя двуводный нитрат цирконила ZrO(NO₃)₂×2H₂O; его перемешивали на магнитной мешалке (400 об./мин.) в течение 20 мин. при 90°С. Затем растворы солей церия и циркония соединяли и перемешивали на магнитной мешалке (400 об./мин.) в течение 40 мин. при 90°С.

Параллельно приготовили водную суспензию композита MgO-Al₂O₃, синтезированного согласно параграфу 2.3.1. настоящей главы. Нанопорошок MgO-Al₂O₃, смешивали с деионизованной водой на магнитной мешалке (600

об/мин.) в течение 40 мин. при 90°С. К раствору солей церия и циркония добавляли МЭА и перемешивали при 90°С со скоростью 500-600 об./мин. в течение 10 мин. до получения золя. Мольное отношение МЭА/(Ce+Zr) в реакционной смеси составляло 2. К полученному золю добавляли суспензию композитного порошка MgO-Al₂O₃ и перемешивали при 600 об./мин. и 90°С в течение 1 ч. Затем смесь упаривали при температуре 92-93°С и перемешивании со скоростью 600 об./мин. до формирования геля, который затем прокаливали в муфельной печи при 500°С в течение 1 ч. Всего было получено 38 композитных нанопорошков состава Ce_{0.09}Zr_{0.91}O₂/MgAl₆O₁₀/γAl₂O₃.

Рис. 51. Блок-схема способа получения композитного нанопорошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$

2.4. Исследования фазового состава и морфологии синтезированных нанопорошков 2.4.1. Рентгеновская дифракция

Для проведения рентгенофазового анализа синтезированных порошков использовали дифрактометр ДРОН-3M с СиК_а- или СоК_а-излучением. Для идентификации фаз использовали картотеку JCPDS. Средний размер кристаллитов, микродеформации, фазовый состав и концентрации допирующих атомов в решетке были рассчитаны методом Ритвельда, который заключается в итерационной процедуре минимизации отклонений экспериментальной дифрактограммы от расчетной [123].

Программное обеспечение для интерпретации данных РФА, а именно качественного, PHAN, и количественного фазового состава, PHAN%, было разработано на кафедре физического материаловедения МИСиС [124].

Отклонение Φ рассчитывали, согласно формуле (1)

$$\Phi = \sum w_i (I_{\text{эксп}} - I_{\text{теор}})$$
(1)

і- номер экспериментальной точки в положении 20;

I_{эксп} – интенсивность отраженного луча, измеренная при 20;

 $I_{\text{теор}}$ – расчетная интенсивность отраженного луча при 20;

w – статистический вес (1/І_{эксп}).

Под шириной рефлекса подразумевают ширину рефлекса прямоугольного профиля, у которой максимальная и интегральная величины интенсивности равны соответственно максимальной и интегральной интенсивности экспериментальной линии.

Для определения размера кристаллита необходимо, чтобы инструментальная ширина (B_g) не превосходила физическую ширину линии (B_p) более чем 3 раза. Угловая ширина приемной щели h/R_g дает основной вклад в инструментальную ширину линии, где h- ширина щели (0,5 мм), R_g –радиус гониометра (192 мм).

$$B_p = \frac{\lambda}{D \times \cos\theta} \tag{2}$$

$$B_g = \frac{3 \times h}{4 \times Rg} \tag{3}$$

D - размер кристаллита

 λ – длина волны рентгеновского излучения (от 10^{-2} до $10^2 {\rm \AA})$ θ – угол Брэгга

Тогда:

$$\frac{\lambda}{D \times \cos\theta} > \frac{3 \times h}{4 \times Rg} \qquad (4)$$
$$D < 4 \times \lambda \times Rg3 \times \cos\theta \times hD < \frac{4 \times \lambda \times Rg}{3 \times \cos\theta \times h} \qquad (5)$$

2.4.2. Электроакустический метод определения электрокинетического потенциала золей

их ζ-потенциала Измерение размеров частиц И В полученных концентрированных суспензиях проводили на акустическом спектрометре DT-1200 производства компании Dispersion Technology (США). В основе конструкции акустического спектрометра DT-1200, лежит принцип передачи коротких акустических сигналов с разными частотами при изменении величины зазора между излучателем и приемником акустических колебаний. Относительная погрешность при измерении частиц золя составляла 5%. Потенциал рассчитывали на основании экспериментальных измерений коллоидного вибрационного тока. Стандартное отклонение для измерений ζ-потенциала, как правило, составляло 0,3 мВ. Измерения проводили через 20-30 мин. после получения золя.

2.4.3. Просвечивающая и сканирующая электронная микроскопия

Морфологию полученных порошков исследовали методами просвечивающей электронной микроскопии и сканирующей электронной микроскопии (ПЭМ и СЭМ, соответственно). Для этой цели использованы: просвечивающие электронные микроскопы LEO 912 ab Omega Carl Zeiss и Philips EM-301,

сканирующие электронные микроскопы VEGA TESCAN с приставкой для локального рентгеноспектрального анализа INCA и LEO 1420 с приставкой для электронно-зондового микроанализа (PMA) INCA Energy-300).

2.4.4. Адсорбция-десорбция азота

Исследование поверхности и пористости порошков проводили на установке TriStar 3000 фирмы Micrometrics по кривым адсорбции-десорбции азота, а также с помощью анализатора удельной поверхности NOVA 2200. Удельную поверхность определяли методом Брунауэра-Эммета-Теллера (БЭТ), а распределение пор по размерам рассчитывали методом Баррета-Джойнера-Халенды (БДХ) при температуре -195°C.

2.4.5. Синхронный термический анализ с масс-спектрометрией

Синхронный термический анализ является комплексным методом исследования химических и физико-химических процессов, происходящих в образце в условиях программированного изменения температуры. Его проводили в синхронном термоанализаторе STA 409 Luxx в температурном диапазоне от 25 до 500°C, используя режимы дифференциального термического анализа (ДТА), дифференциальной сканирующей калориметрии (ДСК) и термогравиметрии (ТГ).

Принцип работы синхронного термоанализатора заключается в измерении разности тепловых потоков от исследуемого образца и образца сравнения при линейном нагреве или охлаждении, сопровождаемом измерением массы образца.

Для проведения анализа подготовили пять Al-, Mg-, Ce- и Zr-содержащих ксерогелей, полученных при 175-200°С. Образцы помещали в корундовые тигли и исследовали изменение их масс при нагревании в интервале температур 200-500°С. Результаты измерений представляли в форме кривых термогравиметрии $(T\Gamma)$ И дифференциальной сканирующей калориметрии (ДСК). Maccспектрометрический анализ газообразных продуктов разложения пробы,

проводили с помощью квадрупольного масс-спектрометра с капиллярным подключением NETZSCH QMS403C Aëolos (энергия ионизирующих электронов 70-72 эВ). Принцип работы масс-спектрометра заключается в разделении ионов исследуемого вещества по величинам m/z, измерение этих величин и доли каждого из видов ионов в общем ионном токе.

2.4.6. Диффузионная аэрозольная спектрометрия

Распределение ПО размерам было исследовано частиц С помощью автоматизированного диффузионного аэрозольного спектрометра, модель 2702 фирмы Aeronanotech (ДАС). Прибор состоит из диффузионных батарей, конденсационного укрупнителя аэрозольных частиц, оптического счетчика частиц, компьютера, контролирующего работу прибора. В диффузионных батареях происходит осаждение высокодисперсных частиц, по этому осаждению определяют проскок частиц через диффузионные батареи. Укрупнитель частиц предназначен для определения концентрации высокодисперсных частиц при помощи оптического счетчика. После того, как все частицы становятся оптически активными, их концентрация определяется оптическим счетчиком.

Методика измерения размеров частиц заключается в пропускании потока с аэрозолем через диффузионные батареи и последующем расчете количества частиц. Результаты расчета количества частиц сравнивают с расчетными размерами (расчетный размер определяется полуэмпирическим методом). На основании этого сопоставления рассчитывается распределение по размерам частиц. Относительная погрешность измерений составляла 5%.

2.4.7. Фурье-ИК-спектроскопия

Исследование порошков методом Фурье-ИК-спектроскопии проводили на ИКмикроскопе HYPERION-2000, сопряженным с Фурье-ИК-спектрометром IFS-66 v/s Bruker (кристалл Ge, 150 сканов, разрешение 4 см⁻¹).

2.4.8. Элементный анализ

Анализ был проведен на атомно-эмиссионном спектрометре с индуктивно связанной плазмой Optima-5300. Содержание углерода во всех образцах составило не более 0,9 вес.%.

2.5. Тестирование разработанного композитного нанопорошка Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃ в консолидации с целью получения мелкозернистой керамики

2.5.1. Дилатометрия

Для установления температуры обжига и изменения линейных размеров, отформованные цилиндрические образцы из композитного нанопорошка исследовали на дилатометре NETZSCH DIL 402 C, Германия. Нанопорошок состава: 18 вес.% $Ce_{0,09}Zr_{0,91}O_2$, 2,5 вес.% MgO и 79,5 вес.% Al_2O_3 - в течение 30 сек. прессовали в бруски с размерами 20^x5^x5 мм с помощью одноосного прессования под давлением 40 МПа. Скорость нагрева и охлаждения в течение всего анализа составляла 10° /мин.

Изменение длины брусков оценивали при трех различных режимах спекания. Режим 1: скорость изменения температуры - 10°/мин. в интервале от комнатной до 1400°С. Режим 2: скорость повышения температуры - 10°/мин. в интервале от комнатной до 1150°С; выдержка при 1150°С в течение 30 мин.; охлаждение со скоростью 10°/мин. Режим 3: скорость повышения температуры – 21,5°/мин. в интервале от комнатной до 1075°С; выдержка при 1075°С в течение 160 мин.; охлаждение со скоростью 10°/мин.

2.5.2. Одноосное прессование с последующим спеканием

Одноосное прессование на гидравлическом прессе проводили на воздухе, при комнатной температуре под давлением 40-980 МПа в течение 30 сек. Спекание

проводили в вакуумной печи при температуре 1300-1400°С в течение 1 ч при скорости подъема температуры не более 10°/мин. Модельные керамические образцы были получены в виде дисков диаметром 20 мм и высотой 6 мм. Всего в тестовом режиме получили 3 образца модельной керамики.

2.5.3. Магнитно-импульсное прессование и спекание

Магнитно-импульсное прессование и спекание в муфельной печи использовали для формирования плотной керамики. Одноосный магнитно-импульсный пресс содержит плоский спиральный индуктор и механический концентратор, отделяемый от индуктора тонким изолирующим зазором, как представлено на Рис. 52 [125]. В качестве источника мощных импульсных токов и магнитных полей использовали импульсный генератор с емкостным накопителем энергии. При пропускании разрядного тока і накопителя через индуктор в зазоре между ним и концентратором создается импульсное магнитное поле В, индуцирующее ток плотностью і в проводящей поверхности концентратора. Результирующая сила f, выталкивающая концентратор из области магнитного поля, является результатом взаимодействия индуцированного тока і и магнитного поля. Концентратор, аккумулируя механический импульс, приводит в движение пуансон, сжимающий порошок в матрице. Диски диаметром 15 мм и высотой 2-4 мм получали при давлении с амплитудой до 1,6 ГПа при длительности импульса 300-500 мкс. Температура дегазации при компактировании составила 425°C, а длительность дегазации - 120 мин. Полученные заготовки (green bodies) спекали при 1550°С в течение 1 ч. Магнитно-импульсным прессованием было получено 22 образца модельной керамики.

Рис. 52. Схема одноосного магнитно-импульсного прессования.

2.5.4. Горячее прессование

Горячее прессование композитного нанопорошка проводили на установке горячего прессования Thermal technology inc. High temperature experts - HP20-3560-20 в среде аргона с размерами горячей зоны 90×152 мм, при максимальном удельном усилии – 30 МПа. Температуру повышали линейно со скоростью 10°/мин., обжиг проводили при максимальной температуре (t_{max}), равной 1550°С и давлении до 30 МПа. Было получено 13 образцов модельной керамики.

2.5.5. Дополнительная термообработка керамики после горячего прессования

Образцы керамики, полученной горячим прессованием дополнительно подвергали термообработке в печи Thermoceramics на воздухе в корундовых тиглях. Скорость повышения и понижения температуры составляла не более 10°/мин. Температуру повышали до 1500°С и выдерживали при ней в течение 1 ч. Всего получили 5 модельных образцов.

2.6. Анализ микроструктуры и плотности полученной керамики

Анализ микроструктуры и элементный состав полученной модельной керамики исследовали с помощью сканирующего электронного микроскопа VEGA TESCAN с приставкой для локального рентгеноспектрального анализа (ЭДС) и растрового электронного микроскопа LEO 1420 с приставкой для рентгеноструктурного микроанализа (РМА) INCA Energy-300.

Плотность р_{каж} образцов определяли с помощью гидростатического взвешивания в воде (ГОСТ 2409-95). Образцы керамики взвешивали на аналитических весах. Точность взвешивания соответствовала ±0,0001 г. Для насыщения образцов жидкостью применяли метод кипячения. Для этого сухие взвешенные образцы помещали на подставке С отверстиями В сосуд, который заливали дистиллированной водой. Образцы кипятили 2 ч, затем охлаждали в воде до комнатной температуры. Насыщенные водой образцы взвешивали на аналитических весах с приставкой для гидростатического взвешивания в воде и на воздухе. При взвешивании в погруженном состоянии образец подвешивали на сетке и опускали в воду. Для взвешивания на воздухе с образца, насыщенного водой, предварительно удаляли избыток жидкости.

Кажущуюся плотность определяли по формуле (6):

$$\rho_{\text{каж}} = \frac{m}{m_1 - m_2} \tag{6},$$

где т – масса сухого образца;

m₁ – масса образца, насыщенного водой на воздухе;

m₂ – масса насыщенного образца, взвешенного в воде.

Относительную плотность $\rho_{\text{отн.}}$ рассчитывали как отношение $\rho_{\text{каж.}}/\rho_{\text{теор.}} \times 100\%$.

2.7. Заключение

В ходе эксперимента проведено 174 синтеза нанопорошков. получено для тестирования. В ходе работы получено: 104 нанопорошка, из них впервые - 16, и 47 модельных образцов мелкозернистой керамики.

ГЛАВА З РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Однофазные наночастицы

Одним из наиболее привлекательных методов синтеза наночастиц является синтез. обеспечивающий высокую воспроизводимость физикозоль-гель химических свойств [126]. Модифицированный золь-гель синтез наночастиц индивидуальных оксидов с применением в качестве стабилизаторов золей МЭА, ДМОА, ГМТА, ТЭАГ был разработан и опробован на серии оксидов алюминия, церия и циркония^{1,2}. Синтез, схема которого представлена на Рис. 53, включает в себя: приготовление водных растворов солей, перевод их в золи, стабилизацию упаривание с образованием гелей, которые затем подвергали золей, их термообработке. На заключительном этапе происходили разложение органонеорганического комплекса и формирование кристаллической структуры оксидов.

Рис. 53. Общая схема синтеза металл-оксидных нанопорошков.

¹Трусова Е.А., Вохминцев К.В., **Хрущёва А.А.**, Писарев С.А. Технология ультрадисперсных продуктов для мелкозернистой керамики // Журнал химической технологии. 2013. №5, с. 269-279

²Trusova E.A., **Khrushcheva A.A.**, Kotsareva K.V., Vokhmintcev K.V. The laboratory technology for nanodispersed raw products and fine-grained ceramics// Proceedings of the 2014 world congress on advances in civil, environmental and materials research, M4E.4.MR363_231F-2 (10 pp).

Разработанный способ является легко адаптируемым к промышленной реализации в условиях отечественного производства, которая отличается простотой аппаратурного оформления, «мягкими» условиями процессов, отсутствием операций фильтрации и промывки, возможностью организовать замкнутый цикл.

К преимуществам данного способа получения нанопорошков следует отнести возможность конструирования структуры материалов с новыми свойствами на молекулярном уровне. Так. для получения композитного нанопорошка $Ce_{0.09}Zr_{0.91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$, брутто формуле соответствующего ПО европейскому стандарту ISO 6474-2:2012(E) для порошковой смеси, мелкозернистой керамики предназначенной для получения медицинского назначения, разработан способ формирования был поверхностной Mgсодержащей фазы на наночастицах γAl₂O₃ с последующим нанесением твердого раствора $Ce_{0.09}Zr_{0.91}O_2$ на эти поверхностно модифицированные наночастицы.

Как показано в работе [127], допирование кристаллической решетки γAl_2O_3 оксидом магния позволяет снизить температуру спекания керамики, а также повысить износостойкость материала. Из справочных данных известно, что плотность CeO₂ (7,65 г/см³) выше плотности ZrO₂ (5,68 г/см³). В работах [128, 129] приводятся данные о повышении механической прочности и трещиностойкости керамики, полученной на основе твердых растворов оксидов церия и циркония, в сравнении с диоксидом циркония.

Стабилизация кристаллической решетки ZrO_2 оксидом церия позволяет: вопервых, получать однофазные твердые растворы $Ce_xZr_{1-x}O_2$ в тетрагональной кристаллической модификации, во-вторых, повысить дисперсность CeO_2 в составе твердого раствора в сравнении с индивидуальным оксидом, в-третьих, обеспечить равномерность распределения уплотняющей добавки твердого раствора $Ce_xZr_{1-x}O_2$ в составе керамики.

3.1.1. Оксид алюминия

Для установления влияния условий синтеза на фазовый состав и морфологию полученных порошков γ -Al₂O₃ была проведена серия экспериментов, в которых исследовано влияние концентрации нитрата алюминия в исходном растворе, стабилизатора золя (Ст), мольного отношения Ст/Al, продолжительности старения золя и длительности термообработки на фазовый состав и морфологию синтезированных порошков γ -Al₂O₃. Полученные результаты приведены в сводной Таблице 4.

Таблица 4. Условия синтеза, фазовый состав и дисперсность (по данным РФА) нанопорошка γ-Al₂O₃.

NºNº	Ст	Ct/Al,	Фазовый состав (вес.%) и					
		мол.	D _{ОКР} (нм)					
			cF56	D _{OKP}	cF8	D _{OKP}	hR10	D _{OKP}
1	МЭА	0,5	69,0	3	31,0	8	-	-
2	МЭА	1	67,0	3	33,0	11	-	-
3	МЭА	1,5	59,0	3	41,0	8	-	-
4	МЭА	2	60,0	3	40,0	7	-	-
5	МЭА	2	62,2	3	37,0	7	0,8	50
6	ГМТА	1	59,0	2	40,0	5	1,0	50
7	ДМОА	0,5	57,0	4	43,0	9	-	-
8	ДМОА	1	59,0	3	41,0	7	-	-
9*	МЭА	2	62,0	3	38,0	7	-	-
10**	МЭА	3	60,0	3	40,0	7	-	-

* продолжительность старения золя 1 неделя,

** продолжительность старение золя 20 недель.

(Образцы NoNo 1-5, Таблица Нанопорошки у-Al₂O₃ 4) получали С использованием МЭА в качестве стабилизатора золя при мольном отношении Ст/Al, который изменяли от 0,5 до 2. Исходная концентрация нитрата алюминия в растворе для образцов №№ 1-4 составляла 0,3М. Сингония компонентов нанопорошков у-Al₂O₃ (cF56 или cF8) была приписана в соответствии с карточками 10-0425 и 75-0278 базы данных ICDD PDF-2 2003 г., как показано на Рис. 54 на примере образца 4 из Таблицы 4. Обеим модификациям соответствует пространственная группа Fm3m, анионы которой образуют гранецентрированную кубическую решетку.

Зеленые штрихи – фазе сF56

Рис. 54. Дифрактограмма синтезированного порошка γAl₂O₃ (Образец 4 из Таблицы 4), совмещенная со штрихграммами карточек №№ 10-0425 и 75-0278 базы данных ICDD PDF-2 2003 г.

Для синтеза γAl₂O₃, предназначенного для получения композитных нанопорошков, стабилизатором золя был выбран наиболее экономичный МЭА. На Рис. 55 приведены дифрактограммы образцов №№ 1 и 2 из Таблицы 4. Электроакустическим методом установлено, что средний размер частиц в стабилизированном золе, значение ζ-потенциала которого было равно 4,55 мэВ,

составлял 8 нм. Размер кристаллитов прокаленного γ -Al₂O₃ в этом случае составлял не более 11 нм. Установлено, что изменение величины мольного отношения МЭА/Al в пределах 0,5÷2,0 несущественно сказывается на дисперсности полученного γ -Al₂O₃: средний размер кристаллитов составлял 3 нм для модификации сF56 и 7-11 нм - для cF8. Однако количественное отношение этих модификаций cF56/cF8 с увеличением отношения MЭA/Al до 2 уменьшалось с 2,2 до 1,5. Это свидетельствует об увеличении в составе γ -Al₂O₃ содержания более дефектной и менее стабильной модификации cF8.

*- фаза cF8

Рис. 55. Дифрактограммы порошков Al_2O_3 , полученных при мольном отношении МЭА/Аl, равном 0,5 (*a*) и 1,0 (б) (Образцы №№ 1-2, Таблица 4).

При использовании 0,05М раствора нитрата алюминия и мольном отношении CT/AI = 2 синтезированный порошок γ -Al₂O₃, по данным рентгеновской дифракции, образец 5 из Таблицы 4 (Рис. 56), содержал до 0,8 вес.% корунда (hR10 - α -Al₂O₃) со средним размером кристаллитов 100 нм.

Рис. 56. Дифрактограмма нанопорошка уАl₂O₃ (образец 5 из Таблицы 4).

Данные ПЭМ соответствуют результатам рентгеновской дифракции (Таблица 4), и на микрофотографиях (Рис. 57*a* и *б*) видно, что порошок состоит из хорошо окристаллизованных наностержней, дающих на темнопольных микрофотографиях ПЭМ яркое свечение (Рис. 57*б*). Длина стержней составляет примерно 8-30 нм. При этом высокая дисперсность кристаллитов с кубической сингонией проявляется в картине дифракции электронов (Рис. 57*a*, вставка). Согласно расчету параметр кристаллической решетки, а = 4,096Å.

Рис. 57. Микрофотографии ПЭМ нанопорошка γ -Al₂O₃ (образец 4 из Таблицы 4) на светлом поле – *a*, на темном поле – *б*, электронограмма во вставке.

В качестве стабилизаторов золей также использовали ГМТА и ДМОА (Образцы №№ 6-8, Таблица 4). Использование ГМТА приводило к получению нанопорошка оксида алюминия, содержащего 59 вес.% сF56 и 40 вес.% сF8 с размерами кристаллитов 2-5 нм и 1 вес.% корунда, α-Al₂O₃ (hR10,) со средним размером кристаллитов 50 нм, по данным РФА (образец 6, Таблица 4, Рис. 58).

Использование для стабилизации золя в водно-спиртовой среде ДМОА в сочетании с ацетилацетоном также обеспечивало высокую дисперсность получаемого порошка γ -Al₂O₃, состоявшего из дефектных шпинелей (cF56 и cF8), соответствующих приведенной ранее штрих-грамме (Рис. 54) со средним размером кристаллитов 7-9 нм (Рис. 59).

* - фаза hR10 α - Al₂O₃

Рис. 58. Дифрактограмма порошка Al₂O₃, полученного с использованием ГМТА (образец 6 из Таблицы 4).

*- фаза сF8.

Рис. 59. Дифрактограммы порошков γ -Al₂O₃ (образцы №№ 7 и 8 из Таблицы 4), полученных при ДМОА/Al= 0,5 (*a*) и 1,0 (*б*).

На Рис. 60 представлены кривые адсорбции-десорбции N_2 для образца N_24 (Таблица 4), форма которых свидетельствует о мезопористой структуре слоя порошка. Такая картина является типичной для всей серии синтезированных нанопорошков γ -Al₂O₃ (Таблица 4), причем их удельная поверхность, как правило, составляла 80-90 м²/г.

Рис. 60. Кривые адсорбции-десорбции азота для образца №4 из Таблицы 4.

Исследовано влияние старения золя в течение 1 и 20 недель на дисперсность у-Al₂O₃ при мольном отношении MЭA/Al в реакционной смеси, равном 2 и 3, соответственно (Таблица 4, образцы №№ 9, 10). По данным рентгеновской дифракции, порошки представляли собой смеси дефектных шпинелей сF56 и cF8, причем их весовое отношение практически соответствовало порошку у-Al₂O₃, полученному из свежеприготовленного золя (образцы №№ 9 и 10 Таблицы 4,). Показано, что продолжительность старения Al-содержащего золя не влияет на размер кристаллитов (D_{OKP}) получаемого нанопорошка γ-Al₂O₃ (Таблица 4), однако, размер ассоциированных частиц при этом возрастает с 15 до 38 нм, по данным ДАС (Таблица 5). Одновременно увеличивается ширина распределения по размерам частиц, и его максимум сдвигается в сторону больших значений (Рис. старения 61). Интересно, что независимо ОТ наличия стадии И ee продолжительности 50% частиц приходится на интервал величин в 15 нм, а расширение распределения происходит за счет его бо́льших величин (Таблица 5).

Таблица 5.	Ланные	ЛАС л.	ля нанопо	рошков	Al_2O_3 .
1 400111144 0	Addition			pomnob	· ··· 2 ·

NºNº*	Средний размер частип, нм	Доля частиц, ∆ (%) и размеры (н			
	,	50%	90%		
2	15	5-20	5-45		
9	30	15-30	10-55		
10	38	20-35	15-65		

*Нумерация Таблицы 4.

Рис. 61. Распределение частиц по размерам, по данным ДАС, для нанопорошков Al₂O₃ №№: 2 (*a*), 9 (*б*) и 10 (*в*) (нумерация Таблицы 5).

Анализ ИК-спектра порошка γ -Al₂O₃, представленного на Рис. 62 (Образец №9 из Таблицы 4) показывает, что на поверхности частиц присутствует большое количество адсорбированных молекул воды, обуславливающих интенсивные полосы в области деформационных H-O-H (1632 см⁻¹) и валентных (3400 см⁻¹) колебаний. Также на поверхности образца имеются различного вида (изолированные, ассоциированные между собой и ассоциированные с водой)

группы -OH (3743, 3250 см⁻¹). Интенсивные полосы в области 400-800 см⁻¹ обусловлены наличием связей Al-O. Слабые полосы в области 2840-2960 см⁻¹ указывают на следовые количества органики, которые, по данным элементного анализа составляли 0,8-0,9 вес.%.

Рис. 62. ИК-спектры порошка γ-Al₂O₃ (Образец № 9 Таблицы 4). Черным цветом обозначен спектр пропускания порошка γ-Al₂O₃, спрессованного в таблетку с KBr. Красным цветом обозначен спектр отражения по методике ATR непосредственно с кристаллов образца.

Результаты исследования влияния температуры прокаливания в интервале 850-900°С и его продолжительности на размер кристаллитов (D_{OKP}) приведены в Таблице 6. Сравнение полученных данных для образцов 1 и 2 показывает, что в интервале температур 850-900°С не происходит процессов, существенно влияющих на морфологию и фазовый состав частиц Al₂O₃. Дальнейшие исследования проводили при 900°С. При увеличении продолжительности прокаливания с 1 до 3 ч фазовый состав качественно не менялся, размер кристаллитов оставался практически тем же. Однако при этом доля модификации cF8 уменьшалась вдвое. При дальнейшем увеличении продолжительности термообработки до 9 ч появлялась примесь α -Al₂O₃, корунда (Рис. 63) со средним размером кристаллитов до 100 нм. Его доля увеличивалась от 0,2 вес.% при $\tau = 6$ ч до 1,0 вес.% при $\tau = 9$ ч (Таблица 6).

Таблица 6. Влияние температуры (t) и продолжительности (τ) прокаливания геля на фазовый состав и дисперсность нанопорошка γ-Al₂O₃, по данным РФА.

NºNº	t, °C	τ, ч	Фазовый состав (вес.%) и					
			средний размер кристаллитов, D _{ОКР} (нм)					
			cF56 D _{OKP} cF8 D _{OKP} hR10				D _{OKP}	
1	850	3	60,0	3	40	7	-	-
2	900	1	60,0	4	40	7	-	-
3	900	3	80,0	3	20	10	-	-
4	900	6	79,8	3	20	10	0,2	100
5	900	9	79,0	3	20	10	1,0	100

* α-Al₂O₃, hR10 (карточка № 74-1081 базы данных ICDD PDF-2 2003 г.)
Рис. 63. Дифрактограммы нанопорошков γ-Al₂O₃, полученных при 900°С и различной продолжительности прокаливания т (ч): 1 (*a*), 3 (*б*), 6 (*в*), 9 (*г*) - образцы №№ 2-5, соответственно, в Таблице 6.

При увеличении продолжительности прокаливания распределение по размеру частиц, по данным ДАС, становилось более широким: для 90% частиц размер увеличивался с 20 (1 ч) до 55 (9 ч) нм (Рис. 64а-г и Таблица 7). Это сопровождалось увеличением среднего размера ассоциированных частиц с 20 до 49 нм (Таблица 7). Следует отметить, что 50-60%-ная фракция (Δ) также имела более по широкое распределение размерам по мере увеличения продолжительности прокаливания: с 10 нм для образцов, прокаленных в течение 1 15-20 3 Ч. оно увеличивалось до нм для продуктов с большей И продолжительностью прокаливания.

Рис. 64. Распределение частиц по размерам для γ -Al₂O₃, полученного при 900°С и различной продолжительности прокаливания τ (ч): 1 (*a*), 3 (*б*), 6 (*в*), 9 (*г*) - образцы №№ 2-5, соответственно, в Таблице 7.

Таблица 7. Данные ДАС для порошков γ-Al₂O₃ (Таблица 6), полученных при температуре прокаливания 900°С и различной его продолжительности.

N <u>o</u> No*	Средний размер	Доля частиц, Δ (%) и размеры (нм)			
	частиц, нм	50-60%	90%		
2	20	10-20	10-30		
3	20	15-25	10-40		
4	23	15-30	10-50		
5	49	30-50	25-80		

*Нумерация Таблицы 6

3.1.2. Оксид циркония

Синтетическая часть работы была направлена на получение тетрагональной модификации ZrO₂, поскольку, она придает материалу повышенные прочность и износоустойчивость [130, 131]. Исследовано влияние природы источников металла, и величины мольного отношения стабилизатора золя и циркония (Cт/Zr) в реакционной смеси, а также продолжительности прокаливания при 500°С на фазовый морфологию нанопорошков ZrO_2 . По состав И данным электроакустического метода, средний размер частиц свежеприготовленного золя составлял 25 нм. Элементный анализ показал, что все прокаленные нанопорошки ZrO₂ содержали не более 0,07 вес.% остаточного углерода.

В Таблице 8 приведены условия синтеза, дисперсность и фазовый состав синтезированных нанопорошков ZrO₂. Фазовая чистота, как было установлено, является более чувствительной к природе источника металла. Так, прокаливание при 500°С свежеприготовленного геля, синтезированного из нитрата цирконила, приводило к формированию 100% тетрагонального диоксида циркония (tP6) (Образцы №№1-5, Таблица 8). При увеличении мольного отношения MЭA/Zr от 1 до 2 размер кристаллитов нанопорошка оставался практически прежним и составлял 10-12 нм (образцы №№ 1-3, Таблица 8). Идентификацию фаз ZrO₂ проводили с использованием базы данных JCPDS, как показано на Рис. 65, где представлены дифрактограммы нанопорошков 2, 13 и 14. Моноклинная модификация mP12 была идентифицирована в соответствии с картой № 05-0543 JCPDS, тетрагональная модификация tP6 – по карте № 24-1164, орторомбическая - по карте № 33-1483. Проведено сравнение дисперсности и фазовой чистоты порошков, полученных в одинаковых условиях, из хлорида и нитрата цирконила. Результаты рентгеновской дифракции И расчеты по методу Ритвельда показывают, что дисперсность ZrO₂ практически не зависит от источника циркония (ср. пары 2-13, 3-10, 4-15, Таблица 8).

Таблица 8. Условия синтеза, фазовый состав и дисперсность нанопорошков ZrO₂. Источники Zr: – хлорид и нитрат* цирконила. Кристаллическая модификация: mP12 – моноклинная, tP6 – тетрагональная; oP12 – орторомбическая.

D_{ОКР} – средний размер кристаллитов.

	Ст	Ct/Zr,	С,	Данные рентгеновской		
NºNº				дифракции		
		MOJIDII.	WOJID/ JI	D _{ОКР} , нм	mP12/tP6, вес.%	
1*	МЭА	2,0	0,5	10	0/100	
2*	МЭА	1,5	1,2	10	0/100	
3*	МЭА	1,0	0,5	12	0/100	
4*	ТЭАГ	1,0	0,4	9	0/100	
5*	ДМОА	1,5	0,6	14	0/100	
6	МЭА	0,5	0,1	9	11/89	
7	МЭА	0,5	0,5	7	0/100	
8	МЭА	0,5	1,0	10	18/82	
9	МЭА	1,0	0,1	9	17/83	
10	МЭА	1,0	0,5	9	28/72	
11	МЭА	1,0	1,2	9	26/74	
12	МЭА	1,5	0,1	8	18/82	
13	МЭА	1,5	1,2	9	40/60	
14	ТЭАГ	0,5	0,9	12	10/74/16 oP12	
15	ТЭАГ	0,5	0,3	9	9/91	
16	ТЭАГ	1,0	0,4	8	0/100	

Рис. 65. Дифрактограммы порошков ZrO_2 : *a* - 14; *б* - 13 (CoK_{α}) и *в* - 2 (CuK_{α}) (нумерация Таблицы 8).

Порошок ZrO₂, полученный из нитрата цирконила с использованием ДМОА и ацетилацетона в качестве стабилизатора золя и комплексообразователя, соответственно, и прокаленный при 500°С также состоял полностью из тетрагональной модификации tP6 (Образец №5 Таблица 8). Для образца №5 была

изучена динамика кристаллизации в ходе прокаливания (Рис. 66). Установлено, что при повышении температуры доля микродеформаций в порошке ZrO_2 снижается с 0,44 до 0,28 %. В исследованном интервале температур 350-500°С наблюдалось незначительное увеличение размера кристаллитов с 10 до 14 нм. Следовательно, в ходе прокаливания до 500°С происходило постепенное формирование дальнего порядка расположения атомов в структуре тетрагонального ZrO_2 . Также установлено, что изменение продолжительности прокаливания с 1 до 2 ч при 500°С не сказывается на размере кристаллитов (14 нм) и фазовом составе нанопорошка ZrO_2 .

Рис. 66. Дифрактограммы нанопорошков ZrO₂ (Таблица 8, образец 5), прокаленного при различных температурах: 350-450°C - картины рентгеновской дифракции получены с использованием CuK_α излучения, 500°C - CoK_α-излучения.

Присутствие хлорид-иона в реакционной смеси обычно приводило к образованию многофазных систем, которые помимо tP6 включали

орторомбическую и моноклинную кристаллические модификации (mP12 и oP12, соответственно). При использовании МЭА в качестве стабилизатора золя (Образцы №№ 6-13, Таблица 8) полученные порошки ZrO₂ имели высокую дисперсность, размер кристаллитов, по данным рентгеновской дифракции, составлял 7-10 нм. Однако доля моноклинной модификации mP12 (JCPDS № 05-0543) при увеличении мольного отношения МЭА/Zr от 0,5 до 1,5 увеличивалась в 2 раза. В случае использования ТЭАГ (Образцы №№ 14-16, Таблица 8) при мольном отношении МЭА/Zr=0,5 формировалось до 74 вес.% mP12, а при МЭА/Zr=1,0 получали 100% тетрагональную модификацию tP6.

Исследовано влияние исходной концентрации раствора соли циркония и величины мольного отношения стабилизатора к металлу (Ct/Zr) на дисперсность и фазовую чистоту нанопорошка ZrO₂. Рис. 67*a* показывает, что оптимальным условием для получения однофазного тетрагонального ZrO₂ (tP6) является использование сочетания 0,5M раствора хлорида цирконила при мольном отношении MЭA/Zr, равном 0,5. При той же концентрации раствора соли увеличение мольного отношения MЭA/Zr до 1 приводило к резкому повышению доли моноклинной фазы mP12 (Puc. 73*a*). Как видно на Puc. 67*6*, концентрация исходного раствора хлорида цирконила также оказывает существенное влияние на фазовый состав ZrO₂. При использовании более концентрированных растворов соли циркония доля моноклинной фазы значительно возрастала и достигала 40 вес.%.

Использование ТЭАГ для стабилизации золя приводило к получению порошка ZrO₂, состоявшего более чем на 90 вес.% из тетрагональной tP6 и моноклинной mP12 модификаций. Нитрат цирконила является предпочтительным в качестве источника металла, так как в этом случае не требуется отмывать Cl-ионы, полное удаление которых, как известно, невозможно, и в нашем случае содержание остаточного хлора в порошке достигало 0,9 вес.%.

104

Рис. 67. Доля моноклинной фазы (mP12) при различных концентрациях раствора хлорида цирконила (M) (*a*) и при различных величинах мольного отношения MЭA/Zr (*б*).

Установлено, что при использовании в синтезе нитрата цирконила в сочетании с ТЭАГ прокаливание геля-интермедиата при 500°С приводит к формированию только тетрагональной модификации (tP6) со средним размером кристаллитов (D_{OKP}) 8 нм. Порошок ZrO₂, полученный с использованием МЭА и прокаленный при 500°С, представлял собой смесь тетрагональной и моноклинной модификаций с весовым отношением tP6/mP12 = 26/74, средним размером кристаллитов (D_{OKP}) 9 нм и удельной поверхностью 70 м²/г.

Ha работы проводили исследование следующем этапе термической устойчивости порошков ZrO₂ к фазовому расслоению и росту частиц. На Рис. 68 и 69 показана рентгеновская дифракция на порошках ZrO₂, прокаленных в течение 1 ч при различных температурах. Установлено, что содержание моноклинной фазы mP12 (2Ө = 28,2°; 31,4°) при повышении температуры прокаливания с 500 до 600 и 800°С (при т=1 ч) увеличивается с 26 до 55 и 94 вес.%, соответственно. При этом переход метастабильной модификации tP6 в mP12 происходит с разной интенсивностью порошках, полученных с использованием различных В стабилизаторов золя, хотя укрупнение частиц происходит практически одинаково: до 12-14 и 25-27 нм, соответственно (Рис. 68, 69). Показано, что в однофазном ZrO₂ при 800°C переход tP6 \rightarrow mP12 затрагивает 64 вес.%, тогда как в двухфазном ZrO₂ при той же температуре содержание модификации mP12 составляло 94 вес.%. (Рис. 69). При этом происходило укрупнение кристаллитов: с 8 до 13 нм для tP6 и 30 нм – для mP12 (Рис. 69). Таким образом, экспериментально показано, что используя TЭАГ для стабилизации золя, можно получать нанопорошки тетрагонального ZrO₂ с повышенной термостабильностью.

Рис. 68. Дифрактограммы нанопорошков ZrO₂, полученных с использованием МЭА (Таблица 8 – образец №11) и прокаленных при различных температурах. Т – тетрагональная, М – моноклинная модификации.

Рис. 69. Дифрактограммы нанопорошков ZrO₂, полученных с использованием ТЭАГ (образец № 15 в Таблице 8) и прокаленных при различных температурах. Т – тетрагональная, М – моноклинная модификации.

Согласно данным адсорбции-десорбции N₂ (Рис. 70*а*,*б*), нанопорошки ZrO₂ имели мезопористую структуру с размерами пор 3-4 нм. В Таблице 9 представлена удельная поверхность порошков ZrO₂, полученных с использованием стабилизаторов золей МЭА и ТЭАГ, мольных отношений Cт/Zr, равных 0,5 и 1,5 и концентрации растворов соли 0,1-1,2M. Удельная поверхность нанопорошков ZrO₂ составила 40-80 м²/г, и наибольшей удельной поверхностью обладали порошки, полученные при MЭA/Zr=1,0.

N⁰	Ст	Ст/Zr, мол.	С, М	$\mathbf{S}_{\mathrm{yd}},\mathbf{m}^2/\Gamma$
1	ТЭАГ	0,5	0,9	53
2	МЭА	1,0	1,2	71
3	МЭА	0,5	0,4	40
4	МЭА	0,5	1	67
5	ТЭАГ	0,5	0,3	46
6	МЭА	0,5	0,08	66
7	МЭА	1,0	0,08	78
8	МЭА	1,2	0,6	67
9	МЭА	1,0	0,5	46
10*	МЭА	1,5	1,2	42
11	МЭА	1,5	0,1	53
12	ТЭАГ	1,5	0,1	66
13*	ТЭАГ	1,0	0,4	45
14	МЭА	1,0	0,5	72

Таблица 9. Условия синтеза и удельная поверхность ZrO₂, по данным БЭТ; Источники Zr: – хлорид и нитрат* цирконила.

Рис. 70. Результаты адсорбции-десорбции N_2 для ZrO_2 : *a* – образец №1, *б* – образец №2 (нумерация Таблицы 9).

Микрофотографии на Рис. 71 показывают, что данные ПЭМ согласуются с результатами расчета по данным рентгеновской дифракции (Таблица 8). Темнопольная съемка объектов (Рис. 716 и г) показывает, что порошки 11 и 14 (Таблица 8) состоят из хорошо окристаллизованных дискретных частиц с размерами 7-15 нм. По данным ДАС (Рис. 72), средний размер частиц в полученных порошках составлял 30 нм, что свидетельствует о наличии в порошке агломератов, состоящих из 2-3 кристаллитов.

Рис. 71. Микрофотографии ПЭМ нанопорошков ZrO₂: *а* , *б*- образец №11, *в*, *г* – образец № 14 (Таблица 8).

Рис. 72. Распределение частиц по размерам для нанопорошков образец №14 (*a*) и 11 (*б*) из Таблицы 8.

109

3.1.3. Оксид церия

Порошки CeO₂ получали с использованием нитрата церия в качестве источника металла и ДМОА - в качестве стабилизатора золя при мольном отношении ДМОА/Се, равном 0,67 или 2,0. В Таблице 10 представлены условия синтезов, данные рентгеновской дифракции, удельная поверхность и размер пор полученных порошков CeO₂³.

Как показывает анализ Таблицы 10, использование криообработки свежеприготовленного золя (-196°С, N₂) с последующей сублимационной сушкой положительно отразилось на дисперсности CeO₂. Сравним пары образцов: 1 - 2 и 3 - 4. При использовании величины мольного отношения ДМОА/Се, равного 2, дисперсность прокаленного порошка повышалась более чем в 3 раза, по сравнению с порошком, синтезированным при мольном отношении ДМОА/Се, равном 0,67. При этом средний размер кристаллитов составлял 8 ± 1 нм, и удельная поверхность увеличивалась в 8,4 раза.

Если синтез проводили в обычных условиях, уменьшение доли ДМОА в реакционной смеси в 3 раза мало сказывалось на дисперсности, хотя удельная поверхность и уменьшалась на 60%. Однако при проведении синтеза с использованием криообработки золь оказывался более чувствительным к изменению мольного отношения: дисперсность повышалась в 4 раза, при этом удельная поверхность увеличивалась в 14 раз⁴. Все полученные порошки имели микро-мезопористую (бимодальную) структуру с размером пор менее 4 нм, где до 50% удельной поверхности было обеспечено микропорами.

³ Патент № RU2506228 от 10.02.2014. Трусова Е.А., Загайнов И.В., **Хрущёва А.А.** Способ получения мезопористого наноразмерного порошка диоксида церия

⁴ Трутнев Н.С., Трусова Е.А., **Хрущёва А.А.,** Буздалина И.А. Криотехнологии в получении ультрадисперсных порошков оксидов металлов и солей // Перспективные материалы. 2011 - 13(6)- Т. 1- С. 213-217

Таблица 10. Условия синтеза, результаты рентгеновской дифракции и адсорбциидесорбции N₂ для полученных порошков CeO₂

No		Наличие крио-				
JN≌ No	ДМОА/Ce,	обработки золя	D _{OKP} ,	S _{уд} ,	Размер	Доля
JNΩ	МОЛ.	в схеме	НМ	M^2/Γ	мезопор, нм	микропор, %
		получения				
1	2	_	25	16	3,8	14
2	2	+	8	134	3,8	9
3	0,67	_	28	10	3,9	35
4	0,67	+	7	140	3,8	9

На Рис. 73 представлены типичные для полученных порошков CeO_2 кривые адсорбции-десорбции N_2 (Рис. 73*a* и *в*), а также кривые распределения по размеру пор (Рис. 73*б* и *г*). Для образцов, синтезированных с использованием криообработки золей (образцы 2 и 5) кривые адсорбции-десорбции N_2 можно отнести к IV типу, тогда как кривые, соответствующие образцам, полученным из свежеприготовленных золей (образцы 1 и 4), относятся ко II типу (по номенклатуре IUPAC).

Размеры входного отверстия пор, рассчитанные методом БДХ по кривой десорбции, практически равны между собой (Рис. 73 δ). Однако объем N₂, адсорбированного внутри пор, больше в случае образцов 2 и 4. Сравнение Рис. 73 δ и ϵ показывает, что общий объем пор образцов 2 и 4 значительно превышает объем пор образцов 1 и 3. По-видимому, за счет того, что размер кристаллитов образцов 2 и 4 в 4 раза меньше, они способны образовывать пористую структуру с более развитой поверхностью.

Рис. 73. Кривые адсорбции-десорбции N₂ (*a*, *в*) и распределение пор по размерам (*б*, *г*) образцов 1 и 2, 3 и 4 (Таблица 10).

На микрофотографиях, полученных с помощью ПЭМ, видно, что образцы 2 и 4, синтезированные с использованием криообработки золя, имеют более высокую дисперсность, чем образцы 1 и 4 (Рис. 74), и это согласуется с результатами рентгеновской дифракции (Таблица 10)^{5,6}.

⁵Заявка на патент от 18.05.2015 г. (Регистр. № 2015118461) Трусова Е.А., Трутнев Н.С., **Хрущёва А.А.** Способ получения нанопорошков кристаллических оксидов металлов с использованием криообработки водно-органических золей

⁶Trusova E.A., **Khrushcheva A.A.**, Zagainov I.V., Kutsev S.V., Trutnev N.S.; Cryotreatment effect on the morphology of mesoporous ceria prepared by sol-gel technique // Physics, chemistry and applications of nanostructures ed. by V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, C.H. Kam, Science Direct, 2011 - pp. 466-468

Рис. 74. Микрофотографии, полученные с помощью ПЭМ, образцов CeO₂: a - 1, $\delta - 3$, e - 2, e - 4 (Нумерация Таблицы 10).

3.1.4. Твердые растворы Ce_xZr_{1-x}O₂

Выбор оптимальных условий синтеза наноструктурированных однофазных твердых растворов $Ce_xZr_{1-x}O_2$ проводили согласно плану: а) выбор источника циркония (источником церия во случаях был нитрат, см. Экспериментальную часть); б) подбор стабилизатора золя, в) исследование влияния величин мольных отношений $CT/\Sigma(Ce+Zr)$ и Ce/Zr на дисперсность и фазовый состав $Ce_xZr_{1-x}O_2$.

В сводной Таблице 11 приведены условия синтезов и размер кристаллитов однофазных порошков Ce_xZr_{1-x}O₂ при 0,03≤x≤0,16. По данным рентгеновской

дифракции, как показано на Рис. 75 и 76, все порошки $Ce_xZr_{1-x}O_2$ были однофазными в модификации тетрагонально искаженного флюорита (tP6) и имели псевдокубическую сингонию с гранецетрированной кубической подрешеткой церия при отсутствии аморфной составляющей. Тип кристаллической решетки был идентифицирован с использованием базы данных Mineral crystal structure database of IEM RAS, карточка №3206. Анализ приведенных в Таблице 11 данных показывает, что при использовании хлорида цирконила (образцы № 1-6, 8-9, 14-15 и 21) размер кристаллитов $Ce_xZr_{1-x}O_2$ составлял 8-12 нм, а при использовании нитрата – 9-18 нм (образцы № 7, 10-13, 16-20, 22-25). По-видимому, нитрат цирконила не только обеспечивает высокую дисперсность твердого раствора, но и является реагентом более чувствительным к природе стабилизатора и его доле в реакционной смеси, чем хлорид^{7,8}.

Однако следует отметить, что, как и в случае ZrO_2 , при использовании хлорида цирконила в продукте, $Ce_xZr_{1-x}O_2$, сохранялось до 0,8 вес.% хлора, по данным элементного анализа. Присутствие на дифрактограммах небольшого видимого гало при 15-25° связано с применением литола при пробоподготовке порошков к съемке в ячейке дифрактометра. Следует отметить, что наблюдаемая картина рентгеновской дифракции для всей серии нанопорошков $Ce_xZr_{1-x}O_2$ была идентична дифрактограммам чистого ZrO_2 , синтезированного из хлорида и нитрата цирконила, соответственно (Рис. 75 и 76).

⁷Trusova E.A., **Khrushcheva A.A.**, Vokhmintcev K.V. Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. // J. Eur. Cer. Soc. 2012 –V. 32 - pp. 1977–1981

⁸Trusova E.A., **Khrushcheva A.A.**, Shvorneva L.I. The impact of thermal treatment conditions on the formation of crystalline structure of Ce-Zr-oxide composite obtained by a modified sol-gel technique. // J. Phys: Conference Series 2012 – 345- 012035

Рис. 75. Дифрактограммы твердых растворов Ce_xZr_{1-x}O₂, синтезированных из хлорида цирконила (№№ 1-6, 8-9, 14 из Таблицы 11 и ZrO₂ - № 11 из Таблице 8).

Сравнение размеров кристаллитов для серий порошков $Ce_xZr_{1-x}O_2$, полученных при использовании ТЭАГ и ДМОА (образцы 10-13 и 21-25 в Таблице 11, соответственно), показывает, что, на первый взгляд, разница между ними несущественна. Однако, как известно, квантовые эффекты проявляются особенно ярко в диапазоне размеров частиц ≤ 10 нм, и приближение к этому рубежу является одним из решающих факторов для определения предпочтительного использования ДМОА в ряде специфических случаев, связанных с назначением получаемого материала.

Рис. 76. Дифрактограммы твердых растворов Ce_xZr_{1-x}O₂, синтезированных из нитрата цирконила (№№ 16-20 из Таблицы 11 и ZrO₂, № 11 из Таблицы 8).

Установлено, что введение в структуру ZrO_2 ионов Ce⁴⁺ приводит к повышению дефектности решетки флюорита, при этом не наблюдается существенных изменений дисперсности порошка (ср. данные Таблиц 8 и 11) и расслоения фаз. Анализ гистограмм на Рис. 77 показывает, что в случае хлорида цирконила размер кристаллитов составлял 8-10 нм, а в случае нитрата – 9-18 нм. Только при использовании МЭА (x=0,16), наблюдалось увеличение D_{OKP} до 18 нм (примерно в 1,5 раза). Однако в случае ТЭАГ D_{OKP} увеличивался не более чем в 1,3 раза и составлял 11 нм для Ce_{0,16}Zr_{0,85}O₂. Можно также отметить, что средний размер частиц золя, по данным электроакустического метода, составлял 31 и 19 нм при использовании МЭА и ТЭАГ, соответственно.

NºNº	Источник Zr	Ce/Zr, мол.	Ст/(Zr+Ce), мол.	D _{ОКР} , нм
1	ZrOCl ₂ ·8H ₂ O	3/97		9
2	ZrOCl ₂ ·8H ₂ O	6/94		10
3	ZrOCl ₂ ·8H ₂ O	7,5/92,5		9
4	ZrOCl ₂ ·8H ₂ O	9/91	$T\Im A\Gamma/(Zr+Ce) = 0.5$	10
5	ZrOCl ₂ ·8H ₂ O	12/88		8
6	ZrOCl ₂ ·8H ₂ O	16/84		11
7	$ZrO(NO_3)_2 \cdot 2H_2O$	9/91		8
8	ZrOCl ₂ ·8H ₂ O	6/94		8
9	ZrOCl ₂ ·8H ₂ O	12/88		9
10	$ZrO(NO_3)_2 \cdot 2H_2O$	9/91	$T\Im A\Gamma/(Zr+Ce) = 1$	11
11	$ZrO(NO_3)_2 \cdot 2H_2O$	10/90		13
12	$ZrO(NO_3)_2 \cdot 2H_2O$	12/88		10
13	$ZrO(NO_3)_2 \cdot 2H_2O$	16/84		11
14	ZrOCl ₂ ·8H ₂ O	6/94		9
15	ZrOCl ₂ ·8H ₂ O	9/91		8
16	$ZrO(NO_3)_2 \cdot 2H_2O$	6/94		10
17	$ZrO(NO_3)_2 \cdot 2H_2O$	9/91	$M\Im A/(Zr+Ce) = 1$	13
18	$ZrO(NO_3)_2 \cdot 2H_2O$	10/90		11
19	$ZrO(NO_3)_2 \cdot 2H_2O$	12/88		11
20	$ZrO(NO_3)_2 \cdot 2H_2O$	16/84		18
21	ZrOCl ₂ ·8H ₂ O	6/94		10
22	$ZrO(NO_3)_2 \cdot 2H_2O$	9/91	$\prod_{n \neq 0} \frac{1}{\sqrt{2r+C_n}} = 1$	11
23	$ZrO(NO_3)_2 \cdot 2H_2O$	10/90	$\int \mu W OA/(ZI^+Ce) = 1$	11
24	$ZrO(NO_3)_2 \cdot 2H_2O$	16/84		9
25	$ZrO(NO_3)_2 \cdot 2H_2O$	6/94	ДМОА/(Zr+Ce) = 2	11

Таблица 11. Условия синтеза и размер кристаллитов, D_{OKP}, для нанопорошков Ce_xZr_{1-x}O₂ при 0,03≤x≤0,155; Ce(NO₃)₃×6H₂O – источник Ce.

Рис. 77. Зависимость размера кристаллитов $Ce_xZr_{1-x}O_2$ (по данным РФА) от источника циркония и стабилизатора золя при 0,06<*x*<0,16 при Cт/(Ce+Zr) = 1, за исключением *ТЭАГ - ТЭАГ/(Zr+Ce) = 0,5 (Таблица 11).

Таблица 12 показывает влияние продолжительности прокаливания на дисперсность, долю микродеформаций и параметры кристаллической решетки нанопорошка твердого раствора Се_{0,06}Zr_{0,94}O₂ (образец №2 Таблица 11). Как

118

видно, увеличение продолжительности прокаливания нанопорошка $Ce_{0,06}Zr_{0,94}O_2$ с 1 до 21 ч не влияет на дисперсность твердого раствора (Рис. 78). Однако при этом количество микродеформаций уменьшается на 19 отн.%. Повышение температуры прокаливания до 550°C также несущественно сказалось на дисперсности порошка при уменьшении доли микродеформаций на 21%.

Таблица 12. Средний размер кристаллитов (D_{OKP}), доля микродеформаций (е) и параметры кристаллической решетки (а, с) для порошков твердого раствора состава Ce_{0.06}Zr_{0.94}O₂, полученных при различных температурах прокаливания.

Условия термообработки		D _{OKP} ,	e,%	a, Å	c, Å
Температура,	Продолжительность,	НМ			
°C	Ч				
500	1	6	0,98	3,618	5,146
500	21	7	0,79	3,608	5,169
550	1	8	0,77	3,607	5,179

Рис. 78. Зависимость среднего размера кристаллитов (D_{OKP}) от продолжительности прокаливания твердого раствора $Ce_{0.06}Zr_{0.94}O_2(\tau)$ при 500°С.

Согласно данным ДАС (Рис. 79*a* и *б*), часть кристаллитов твердого раствора $Ce_{0,09}Zr_{0,91}O_2$ ассоциирована по 2-3. Средний размер частиц порошка составлял 15 нм (*a*) и 35 нм (*б*). По данным ПЭМ и СЭМ, размер частиц составлял 10-20 нм (Рис. 80*a* и *б*, соответственно). Согласно данным адсорбции-десорбции N₂, удельная поверхность порошка $Ce_{0,09}Zr_{0,91}O_2$ составляла 80 м²/г, а размеры пор составляли 3-4 нм (Рис. 81).

Рис. 79. Распределение частиц по размерам для твердого раствора $Ce_{0,09}Zr_{0,91}O_2$: *а* - образец №4; *б* - образец № 15 (Таблица 11).

Рис. 80. Микрофотографии порошка $Ce_{0,09}Zr_{0,91}O_2$, полученные методом ПЭМ (*a*), СЭМ (δ).

Рис. 81. Данные адсорбции-десорбции N_2 и распределение пор по размерам для $Ce_{0,09}Zr_{0,91}O_2$.

3.1.5. Оксид магния

Наночастицы MgO были синтезированы по разработанной методике с использованием МЭА в качестве стабилизатора золя. По данным рентгеновской дифракции, кристаллиты MgO имели структуру сфалерита cF8 типа B1 со средним размером 35 нм (Рис. 82).

Рис. 82. Дифрактограмма нанопорошка MgO.

3.2. Композитные наночастицы 3.2.1. Двухфазные наночастицы с брутто формулой MgO-Al₂O₃

Для получения композитных наночастиц с брутто формулой MgO-Al₂O₃ на прокаленные при 900°С наночастицы γ Al₂O₃ с размерами 3-11 нм (Образцы №1-3 в Таблице 13) наносили Mg-содержащий золь, стабилизированный МЭА. Доля магния в композитных наночастицах составляла 0,3-3,0 вес.% (в пересчете на оксид). После нанесения проводили термообработку смеси в соответствии с разработанным методом получения наноструктур, выдерживая порошок на заключительном этапе при температуре 500°С в течение 1 ч. В Таблице 13 приведены фазовый состав и размер кристаллитов синтезированных композитных наночастиц с различным содержанием магния.

NoNo	Брутто-формула	Фазовый состав (вес.%) и D _{ОКР} (нм)	
		cF56 (γAl ₂ O ₃)	cF16 (MgAl ₆ O ₁₀)
1	$0,3 \text{ Bec.}\% \text{ MgO/Al}_2\text{O}_3$	49/4	51/7
2	0,5 вес. % MgO/Al ₂ O ₃	57 3	43/7
3	3 вес. % MgO - Al ₂ O ₃	80/4	20/14

Таблица 13. Фазовый состав и дисперсность композитных наночастиц MgO/γ-Al₂O₃ с различным содержанием магния (по данным РФА).

В ИК-спектрах порошка 0,5 вес.% MgO/Al₂O₃ (Рис. 83) наблюдаются активные полосы 3460 см⁻¹, 1628 см⁻¹ и интенсивные полосы в области 580–820 см⁻¹, относящиеся к валентным колебаниям связи Al–O [132]. Полосы 1650 и 3445 см⁻¹ свидетельствуют о большом количестве хемосорбированной воды в образце. Однако их положение отличается от положения соответствующих полос для чистого Al₂O₃ (Рис. 62). Это свидетельствует о том, что произошло изменение длин связей Al-O в решетке Al₂O₃, возможно, вследствие внедрения в нее ионов Mg, в результате чего Al-Al-протошпинель частично превратилась в Al-Mgаналог. Вероятно, при нанесении 0,5 вес.% MgO из золя на поверхности дефектного γ -Al₂O₃ порошка формируются связи Mg-O-Al.

Рис. 83. ИК-спектр для порошка MgAl₆O₁₀/γAl₂O₃ (Образец №2 - Таблица 13). Черный график – спектр пропускания, соответствующий порошку MgAl₆O₁₀-γAl₂O₃, спрессованному в таблетку с KBr. Красный график - спектр отражения по методике ATR непосредственно с кристаллов образца.

На Рис. 84 представлены ПЭМ фотографии, полученные в обычном и темнопольном режимах съемки, образца, содержащего 3,0 вес.% MgO. Как видно, размер кристаллитов составлял не более 15 нм, что соответствовало данным рентгеновской дифракции (Таблица 13). Темнопольное изображение показывает, что частицы хорошо окристаллизованы, они дискретны и ассоциированы за счет электростатики.

На Рис 85*а-в* представлены дифрактограммы композитных нанопорошков с различным содержанием оксида магния. Хорошо видно, что с увеличением его доли в составе композитных наночастиц рефлекс с $\Theta = 38,9^{\circ}$ (cF16) становится более интенсивным. По-видимому, именно внедрение ионов магния в решетку Al₂O₃ обусловливает появление кристалографичекой модификации cF16, которой можно приписать брутто формулу MgAl₆O₁₀⁹.

Рис. 84. Микрофотографии ПЭМ нанопорошка состава: 3 вес.% MgO - Al_2O_3 (образец 3, Таблица 13), на светлом поле – *a*, на темном поле – *б*.

⁹Trusova E.A., **Khrushcheva A.A.**, Kotsareva K.V., Vokhmintcev K.V. The laboratory technology for nanodispersed raw products and fine-grained ceramics// Proceedings of the 2014 world congress on advances in civil, environmental and materials research, M4E.4.MR363_231F-2 (10 pp).

* cF16

Рис. 85. Дифрактограммы нанопорошков MgO-Al₂O₃, доля MgO в которых составляет: 0,3 (*a*), 0,5 (*б*) и 3 (*в*) вес.%.

На Рис. 86 представлены данные ПЭМ для порошка состава: 0,5 вес.% MgO/Al₂O₃ (Образец № 2, Таблица 13). На фотографиях можно видеть наностержни с поперечным размером 6-7 нм и так называемые «круглые» кристаллиты, размеры которых составляют 4-7 нм. Картина дифракции обратных

электронов (вставка) показывает, что порошок хорошо окристаллизован и имеет высокую дисперсность.

Рис. 86. Микрофотография ПЭМ порошка состава: 0,5 вес.% MgO - Al₂O₃ (Таблица 13) и электронограмма – (на вставке).

По данным ДАС (Рис. 87), средний размер композитных частиц MgO-Al₂O₃, содержащих 0,3 вес.% MgO, равен 20 нм. При этом доля частиц (Δ) с размерами 10-30 нм составляет 79%. По-видимому, наночастицы образуют агрегаты по 4-7 кристаллитов. Предложенный способ включения MgO позволяет формировать композитные наночастицы, сохраняя узкое распределение частиц по размерам и высокую дисперсность.

По данным адсорбции-десорбции N_2 , этот порошок имел мезопористую структуру с размером пор 3-4 нм и удельную поверхность ~30 м²/г (Рис. 88).

Рис. 87. Распределение частиц по размерам для нанопорошка состава 0,3 вес.% MgO/Al₂O₃.

Рис. 88. Кривые адсорбции-десорбции N_2 для нанопорошка 0,3 вес.% MgO/Al₂O₃ (*a*), распределение пор по размерам и объему (*б*).

3.2.2. Трехфазные наночастицы Ce_{0.09}Zr_{0.91}O₂/MgAl₆O₁₀/γAl₂O₃

Композитные наночастицы с брутто формулой $Ce_{0.09}Zr_{0.91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ последовательного формирования поверхностной Mgполучали путем модифицированной фазы $(MgAl_6O_{10})$ на основе наночастиц γAl_2O_3 И последующего нанесения из смешанного золя фазы твердого раствора состава синтезы проводили разработанным $Ce_{0.09}Zr_{0.91}O_2$ Bce золь-гель методом. используя в качестве основы наночастицы γAl_2O_3 с размерами 3-7 нм, прокаленные при 900°С. На заключительном этапе композитные частицы прокаливали при 500°С в течение 1ч.

Количественный состав композитных частиц изменяли в узком диапазоне, а именно: количество магния в пересчете на MgO изменяли от 0,2 до 1,0 вес.%. Содержание $Ce_{0,09}Zr_{0,91}O_2$ было одинаковым во всей серии и составляло 20,0 вес.%.

В ходе исследования синтезированных нанопорошков методом Фурье-ИКспектроскопии проведено сравнение характеристичных полос, соответствующих валентным колебаниям Al-O в тройной системе $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ и в двухфазной MgAl_6O_10/γAl_2O_3 (Рис. 89*a*). Также рассмотрены различия ИКспектров твердого раствора $Ce_{0,09}Zr_{0,91}O_2$ в свободном виде и в составе тройных композитных наночастиц (Рис. 89*б*). Ранее в работе [133] было показано, что изменение вида и положения характеристичных полос в спектре композитного порошка указывает на химическое взаимодействие между структурными элементами всех фаз, в него входящих.

В первом случае наблюдаются различия в интенсивности и положении полос в области 824 см⁻¹, а также в области 1300-1700 см⁻¹, где в ИК-спектре тройной системы появляется новая полоса - 1329 см⁻¹, свидетельствующая о формировании связи, обусловленном химическим взаимодействием твердого раствора $Ce_{0,09}Zr_{0,91}O_2$ и бинарных композитных частиц Al- и Al-Mg-шпинелей. В то же время спектр тройной системы (Рис. 89*a*) не содержит полос в области валентных колебаний 400-800 см⁻¹, которые наблюдались в спектре твердого

раствора (Рис. 89б). При этом интенсивность полос 1413 и 1533 см⁻¹ заметно ослабевает. Анализ различий в ИК-спектрах тройной системы и отдельных ее компонентов позволяет сделать предположение, что все три фазы композитного порошка вступили в химическое взаимодействие между собой с образованием новых связей. Это могут быть связи Zr-O-Al, возникновение которых и приводит к изменениям в спектрах валентных колебаний обеих кристаллических решеток.

Рис. 89. ИК-спектры пропускания (таблетки с КВг) порошков: (*a*) - $MgAl_6O_{10}/\gamma Al_2O_3$ (117H) и $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ (118H); (*б*) - Черный график – спектр пропускания, соответствующий порошку $Ce_{0,09}Zr_{0,91}O_2$, спрессованному в таблетку с КВг. Красный график - спектр отражения по методике ATR непосредственно с кристаллов образца

По данным рентгеновской дифракции (Рис. 90), композитные наночастицы состояли из трех ультрадисперсных фаз: γ -Al₂O₃ (cF56) и MgAl₆O₁₀ (cF16), и твердого раствора Ce_{0,09}Zr_{0,91}O₂ в тетрагональной модификации (tP6) (Таблица 14). Как видно из Таблицы 14, изменение содержания MgO от 0,2 до 1,0 вес.% приводит к увеличению весовой доли Mg-Al-шпинели практически в два раза по весу. При этом размер частиц формирующейся шпинели превосходит размер исходных частиц Al₂O₃ в 2-3 раза. Следует отметить, что размер кристаллитов твердого раствора в составе композитных частиц не превышал 2 нм, и это в несколько раз меньше, чем в свободном Ce_{0,09}Zr_{0,91}O₂, как показывает сравнение данных в Таблицах 11 и 14.

Рис. 90. Дифрактограмма композитного порошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ (№2 в Таблице 14).

NoNo	$Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/Al_2O_3$,	Фаза (модификация), вес.% и D _{OKP} , нм		
	вес.%	γAl_2O_3	MgAl ₆ O ₁₀	$Ce_{0,09}Zr_{0,91}O_2$
		(cF56)	(cF16)	(tP6)
1	20/0,2/79,8	55/3	25/10	20/2
2	20/0,4/79,6	42/3	38/7	20/2
3	20/1/79	30/4	47/6	23/2

Таблица 14. Фазовый состав и размер кристаллитов (D_{OKP}) в композитных нанопорошках $Ce_{0.09}Zr_{0.91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$, по данным РФА.

На микрофотографиях ПЭМ (Рис. 91*a*, *б*) видно, что порошок состоит из частиц двух видов: с размерами 2-6 и 8-16 нм. Данные ПЭМ (Рис. 91) хорошо согласуются с данными рентгеновской дифракции (Таблица 14 и Рис. 90). Можно предположить, что более мелкие кристаллиты - это γAl_2O_3 и Ce_{0,09}Zr_{0,91}O₂, более крупная фракция относится к шпинели с брутто-формулой MgAl₆O₁₀. Дифракция электронов показывает присутствие в системе нескольких типов кристаллической решетки с преобладанием γAl_2O_3 (Рис. 91*б*, вставка).

Рис. 91. Микрофотографии ПЭМ композитного нанопорошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ на светлом поле (*a*) и на темном поле (*б*), дифракция электронов (вставка).

Данные ДАС, представленные на Рис. 92, также соответствуют результатам РФА и ПЭМ. Они показывают, что более 54% частиц имеют размеры 20-45 нм, а средняя их величина составляет 30 нм. По-видимому, порошок состоит из ассоциатов, включающих 2-7 кристаллитов.

Рис. 92. Распределение частиц по размерам для порошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$, по данным ДАС.

3.3. Предполагаемые схемы формирования металлоксидных наноструктур в условиях золь-гель синтеза и последующей термообработки

Предполагаемые схемы формирования наночастиц оксидов металлов Al, Ce, Mg, Zr разработанным методом представлены на Схемах 6-11. Процесс формирования наночастиц оксида алюминия (Схема 6) включает в себя $A1^{3+}$ взаимодействуют Гидролизованные ионы несколько этапов. co стабилизатором золя МЭА. Затем происходит поликонденсация с образованием интермедиата A, представляющего собой олигомерный интермедиат. Термообработка его при 900°С приводила к кристаллизации уAl₂O₃. По данным ДТА/МС, в ходе термообработки в интервале 226-257°С происходил выброс фрагментов МЭА: 30, 44, 45 m/z. Вклад молекулярных ионов продуктов окислительно-восстановительных процессов NO⁺ и CO₂⁺ в доли ионного тока с

m/z 30 и 44, соответственно, в условиях съемки невозможен, однако, их присутствие в небольшом количестве нельзя исключить.

Схема 6. Формирование наночастиц γAl_2O_3 .

На Схемах 7 и 8 представлены предполагаемые схемы формирования наночастиц ZrO₂ со средним размером кристаллитов 9 и 12 нм из хлорида и нитрата цирконила, соответственно. Гидролизованные ионы цирконила [ZrO]²⁺ взаимодействуют с МЭА с образованием интермедиатов Б (Схема 7), В и Г (Схема 8). В пункте 3.1.2. показано, что использование нитрата цирконила в качестве источника металла позволяет получать ZrO₂ в тетрагональной модификации. В случае применения хлорида цирконила в результате синтеза получали смесь моноклинной (mP12) и тетрагональной (tP6) модификаций, что свидетельствовало о присутствии в субстрате двух видов интермедиатов, вероятно, В и Г. Кроме того, по данным элементного анализа, в прокаленном порошке ZrO₂, синтезированном из хлорида цирконила, доля остаточного хлора составляла 0,75-0,90 вес.%.

Поскольку при рассмотрении Схемы 7 мы убедились в том, что формирование кристаллитов ZrO₂ в модификации tP6 происходит из интермедиата Б или из продукта его гидролиза Б₁ (II стадия гидролиза нитрата цирконила), то можно

сделать предположение, что в случае использования хлорида цирконила структуры Г является гидролизованный предшественником ион Γ_0 . a предшественником В – гидролизованный ион В₀. Поскольку интермедиат Г в отличие от интермедиата В способен участвовать в реакции поликонденсации одновременно ПО двум направлениям, скорость образования органонеорганического олигомерного комплекса-предшественника модификации tP6 выше, чем комплекса-предшественника mP12. Это соответствует данным PФА, в соответствии которыми весовое отношение моноклинной (mP12) и С тетрагональной (tP6) модификаций в прокаленном ZrO₂ составляло 26/74. По данным ДТА/МС для порошка ZrO₂, полученного из нитрата цирконила, в ходе термообработки геля в интервале температур 280-350°С происходило разложение интермедиата Б с выбросом фрагментов МЭА.

Схема 7. Формирование наночастиц ZrO₂ при использовании в качестве исходного нитрата цирконила.

Схема 8. Формирование наночастиц ZrO₂ при использовании в качестве исходного хлорида цирконила.

Механизм формирования наночастиц CeO_2 в условиях золь-гель синтеза и криообработки золя представлен на **Схеме 9**. Он включает взаимодействие гидролизованных ионов Ce^{3+} с ДМОА с образованием интермедиата Д. Формирование криогеля (Е) происходит при обработке субстрата жидким N₂. Образовавшаяся «рубашка» из кристаллитов воды препятствует агломерации частиц золя и способствует повышению дисперсности частиц CeO_2 .

На Схеме 10 представлена предполагаемая схема формирования однофазных твердых растворов $Ce_xZr_{1-x}O_2$, который включает поликонденсацию гидролизованных ионов В и Ж. В результате образуется олигомерный гель 3 с оксомостиком Zr-O-Ce в составе структурной единицы. При прокаливании геля формируется однофазный твердый раствор $Ce_xZr_{1-x}O_2$. Согласно данным ДТА/МС, разложение органо-неорганического комплекса 3 происходит в интервале температур 250-330°C с элиминированием фрагментов МЭА.

Схема 9. Формирование наночастиц СеО₂.

Схема 10. Формирование наночастиц твердого раствора Ce_xZr_{1-x}O₂.

Предполагаемая схема формирования трехфазных композитных наночастиц Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃ представлен на Схеме 11. Интермедиат (И), образовавшийся в результате гидролиза нитрата магния и стабилизации золя МЭА, хемосорбируется на поверхности частиц прокаленного Al₂O₃ с

образованием поверхностного комплекса K, где он вступает в реакцию конденсации с участием поверхностных протонированных O-ионов. В результате прокаливания нанесенного геля на поверхности наночастиц Al_2O_3 формируется шпинель MgAl₆O₁₀ (Л), на которую затем наносят Ce-Zr-содержащий золь 3 (**Схема 10**). Прокаливание при 500°C образовавшегося поверхностного органонеорганического комплекса M приводит к формированию композитных наночастиц $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$. По данным ДТА/МС, разложение комплекса M происходит в интервале температур 230-360°C с элиминированием фрагментов МЭА.

Схема 11. Формирование композитных наночастиц $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$.

3.4. Тестирование разработанного композитного нанопорошка Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃ в консолидации с целью получения мелкозернистой керамики

Как известно, целью процесса консолидации является получение керамического продукта наиболее высокой и однородной плотности при минимальном укрупнении зерна. При этом работа с нанопорошками осложняется расслоением их механических смесей и агломерацией частиц [134]. Существует несколько подходов к консолидации нанопорошков $Ce_xZr_{1-x}O_2/Al_2O_3$ с помощью холодного или горячего изостатического прессования [135, 136] и магнитно-импульсного прессования [137]. Для тестирования выбраны: (1) одноосное прессование, (2) магнитно-импульсное прессование, (3) горячее прессование.

Тестированию предшествовало дилатометрическое исследование с целью установления температурных интервалов наиболее быстрой усадки «зеленого тела». Спекание заготовок проводили в муфельной печи или печи горячего прессования с использованием ступенчатого графика подъема и снижения температуры. Исследование было направлено на установление оптимальных условий получения наиболее плотной мелкозернистой керамики: температурного режима и графика изменения давления прессования.

Три подхода, приведенных выше, включают в себя компактирование и спекание при разных условиях (давление, температура и продолжительность), занесенных в Таблицы с единой нумерацией для п.п. 3.4.2.-3.4.4 данного параграфа.

3.4.1. Дилатометрия

На первом этапе было проведено исследование усадки заготовки в дилатометре для установления оптимальных параметров процесса спекания механической смеси нанопорошков MgO/Al₂O₃ (3/97, вес.) и $Ce_{0,09}Zr_{0,91}O_2$, взятых в весовом отношении 82/18. Размер частиц порошка составлял 3-12 нм. Бруски, полученные

одноосным прессованием в гидравлическом прессе, спекали в трех различных режимах. Скорость повышения и понижения температуры составляла 10°С/мин. При использовании Режима 1 (Рис. 93) на кривой усадки наблюдалось одно резкое ускорение спекания (зеленая штрих-пунктирная линия). При использовании Режима 2 (красная штрих-пунктирная линия) наблюдали два нижних экстремума: после 110 и 150 мин., причем второй, менее ярко выраженный экстремум, приходился на интервал температур 1450-1500°С. Изменение длины образца при спекании в Режиме 1 составило 8,8%, а в Режиме 2 – 8,3%.

Рис. 93. Результаты дилатометрического исследования в Режимах 1 и 2. Кривые изменения длины заготовки в ходе спекания:

- в Режиме 1
- в Режиме 2

Кривые скорости изменения длины в ходе спекания (первая производная):

в Режиме 1	
в Режиме 2	
Кривые изменения температуры:	
в Режиме 1	
в Режиме 2	

Режим 3 отличался от Режимов 1 и 2 наличием изотермических участков при температурах 1100 и 1500°С. При его использовании линейная усадка образца составила 14%, что существенно больше (в 1,6-1,7 раза), чем при использовании Режимов 1 и 2. Температурный режим 3, как наиболее эффективный, был принят для использования в дальнейшем при тестировании в консолидации.

Анализ Рис. 94 показывает, что максимум пика 1 приходится на интервал температур 1080-1090°С. Второй нижний экстремум наблюдается в интервале температур 1100-1550°С. Третий слабый экстремум при температуре 1550°С совпадает с началом охлаждения. По-видимому, первый пик на кривой усадки соответствует плавлению шпинели $MgAl_6O_{10}$ (cF16, по данным $P\PhiA$), а второй пик - плавлению Al_2O_3 и ZrO_2 , который образуется в результате фазового расслоения $Ce_{0.09}Zr_{0.91}O_2$.

Рис. 94. Исследование спекания композитного порошка состава 18 вес.% $Ce_{0.09}Zr_{0.91}O_2/2,5$ вес.% MgO-79,5 вес.% Al_2O_3 в дилатометре согласно режиму 3.

Установлено, что использование нанопорошка состава 18 вес.% $Ce_{0,09}Zr_{0,91}O_2/2,5$ вес.% MgO-79,5 вес.% Al_2O_3 позволяет снизить температуру спекания с 1700°C до 1400-1550°C, а добавка шпинели MgAl₆O₁₀ с размерами частиц ≤ 10 нм ускоряет спекание керамики. При этом удается получить

мелкозернистую керамику с размером зерна до 3 мкм (Рис. 95)⁹. Наиболее плотный образец имел гидростатическую плотность 3,2 г/см³. Относительная плотность составляла 76% от теоретической (4,22 г/см³). На микрофотографиях (Рис. 95) различимы равномерно распределенные светлые включения твердого раствора Се_{0.09}Zr_{0.91}O₂ в Al-содержащей смешанной фазе.

Согласно данным ЭДС анализа (Таблица 15), в областях 1 и 3 (на Рис. 95a обозначены окружностями) присутствует Al- и Mg-содержащая фаза. При этом область 2 твердого раствора Ce_{0,09}Zr_{0,91}O₂ состоит из спеченных зерен. На Рис. 95 δ в выделенной окружностью области видны тройные стыки спеченных зерен с размерами 2-4 мкм.

⁹ E.A. Trusova, **A.A. Khrushcheva**, K.V. Vokhmintcev, D.D. Titov. Dilatometric sintering study offine-grained ceramics from ultradispersed admixture composed of Ce_{0.09}Zr_{0.91}O₂ and MgO-Al₂O₃. Journal of European Ceramic Society; Elsevier; 33, (2013), 2327-2333.

Таблица 15. Элементный состав полученной керамики: 18 вес.% $Ce_{0,09}Zr_{0,91}O_2/2,5$ вес.% MgO-79,5 вес.% Al_2O_3 (по данным ЭДС). Номера столбцов соответствуют номерам областей на Рис. 95*a*.

Элементы	Состав, ат.%			
Shewenith	1	2	3	
Кислород	76,36	81,58	72,68	
Магний	1,29	-	1,21	
Алюминий	22,20	3,08	26,02	
Цирконий	0,12	15,02	0,06	
Церий	0,03	0,32	0,03	

На данном этапе предложена рабочая модель спекания керамики, соответствующая режиму 3 (Рис. 94), в которой был использован график подъема температуры с двумя изотермическими участками при 1100 и 1550°С.

3.4.2. Одноосное прессование с последующим спеканием

Композитный нанопорошок состава 20 вес.% $Ce_{0,09}Zr_{0,91}O_2/0,4$ вес.% MgO / 79,6 вес.% γAl_2O_3 спрессовали на гидравлическом прессе с усилием 10 т/см² (981 МПа) в брусок с размерами 20×5×4 мм (Таблица 16). Затем брусок спекали в муфельной печи согласно графику (Рис. 96).

Таблица 16. Условия одноосного прессования с последующим спеканием композитного нанопорошка 20 вес.% $Ce_{0,09}Zr_{0,91}O_2/0,4$ вес.% MgO / 79,6 вес.%

N⁰	Давление прессования, МПа	Температура спекания, °С	Гидростатическая плотность, г/см ³
1	981	1400	2,53-2,54

γAl₂O₃ и плотность полученных модельных керамических образцов

Рис. 96. График повышения температуры при спекании в муфельной печи образца 1 из Таблицы 16.

По данным СЭМ, модельный образцы керамики, полученные одноосным прессованием и спеченные по графику, представленному на Рис. 96, имели низкую плотность, 2,53 - 2,54 г/см³, и большое количество открытых макропор (Рис. 97).

Рис. 97. Микрофотография (СЭМ) образца, полученного одноосным прессованием нанопорошка 20 вес.% $Ce_{0,09}Zr_{0,91}O_2/0,4$ вес.% MgO / 79,6 вес.% γAl_2O_3 с последующим спеканием.

3.4.3. Магнитно-импульсное прессование и спекание

Магнитно-импульсное прессование нанопорошков – динамический метод прессования, при котором энергия импульсного магнитного поля преобразуется в импульсные волны сжатия с амплитудой до 2 ГПа. В ходе эксперимента меняли зарядное напряжение прессования, а также температурный режим спекания. В Таблице 17 приведены условия и результаты магнитно-импульсного прессования композитного нанопорошка 20 вес.% Се_{0,09}Zr_{0,91}O₂/0,4 вес.% MgO/ 79,6 вес.% γAl₂O₃.

Сравнение результатов исследования образцов 2-4 (Таблица 17) показывает, что плотность керамики, получаемой при одном и том же температурном режиме, зависит от приложенного зарядного напряжения. Его повышение от 1,5 до 2,4 кВ приводило к повышению плотности керамики от 2,50 до 3,62 г/см³ (в 1,4 раза). Заготовки, полученные при величине зарядного напряжения 2,4 кВ (~1,6 ГПа) и спеченные затем с использованием линейного повышения температуры от комнатной до 1550°С имели кажущуюся плотность 3,61-3,63 г/см³ (Таблица 17).

Затем изменяли температуру прессования и температурный режим спекания. Результаты испытаний образцов 5 и 6 (Таблица 17) при использовании температурного режима с промежуточной изотермой не показали существенных изменений плотности полученного керамического образца. Сравнение образцов 6 и 7 (Таблица 17) показывает, что повышение температуры прессования с 70 до 425°C с использованием одного и того же температурного режима спекания позволило повысить плотность с 3,66 до 3,82-3,83 г/см³, что соответствовало относительной плотности ~91%.

Как видно на микрофотографиях образца 7, полученных с помощью СЭМ (Рис. 98), он имел небольшое количество открытых макропор, при этом размер зерна не превышал 3 мкм. Особенностью полученных образцов являлось наличие равномерно распределенных по поверхности стержней длиной до 5 мкм и со стороной сечения ~500 нм, в состав которых, по данным СЭМ/ЭДС анализа, помимо кислорода входили алюминий, церий и цирконий (Рис. 99).
Таблица 17. Условия и результаты магнитно-импульсного прессования

композитного нанопорошка

	20 вес.%	$Ce_{0.09}Zr_{0.00}$	$_{91}O_2/0,4$	вес.% MgO/	79,6 вес.%	γAl_2O_3 .
--	----------	----------------------	----------------	------------	------------	--------------------

	Прес	сов	ание	Отп	уск	Линеі парам загот	йные етры овки	Керамика	
NoNo	Зарядное напряжение,	ĸВ	T, °C	T, °C	Время, мин	Диаметр, мм	Толщина, мм	Температурный режим спекания (продолжительность выдержки, мин.)	Гидрост. плотность, г/см ³ (±0,0005)
2	1,5		70	425	120	15,10	3,82	20°C→1550°C (30)	2,50
3	2,0		70	425	120	15,10	2,87	20°C→1550°C (30)	3,17
4	2,4		70	425	120	15,05	2,36	20°C→1550°C (30)	3,62
5	2,4		70	425	120	15,05	2,51	20°C→1000°C(60)→1550°C(60)	3,63
6	2,4		70	425	120	15,05	2,31	20°C→1000°C(60)→1550°C(60)	3,66
7	2,4		425	425	120	15,10	2,00	20°C→1000°C(60)→1550°C(60)	3,83
8	2,4		425	425	120	15,10	2,04	20°C→1000°C(60)→1550°C(60)	3,82

Рис. 99. Данные ЭДС анализа образца 7 из Таблицы 17.

3.4.4. Горячее прессование

Метод горячего прессования отличается возможностью одновременного компактирования и спекания заготовки, что обеспечивает формирование плотного и мелкозернистого материала при более низких температурах. Известно, что спекание нанопорошков под давлением приводит к интенсивному уплотнению материала при меньшей скорости роста зерна, чем в условиях спекания без давления [134]. Это позволяет регулировать плотность и размер зерна получаемой керамики путем оптимизации графиков подъема температуры и давления. В Таблице 18 представлены условия горячего прессования и плотность модельных керамических образцов, полученных из нанопорошка состава 20 вес.% Се_{0,09}Zr_{0,91}O₂/0,4 вес.% MgO/ 79,6 вес.% γAl₂O₃.

Образец 9, спрессованный согласно графику, представленному на Рис. 100*a*, имел плотность 3,2 г/см³. Микрофотография СЭМ (Рис. 100*б*) образца 9 показывает, что материал является высокопористым, содержащим большое количество открытых макропор, размер которых достигает нескольких десятков мкм.

Для керамических образцов 10-12 (Таблица 18) температура достижения максимального давления на заготовку составляла 800, 900 и 1000°С (Рис. 101 *a-в*). По данным СЭМ (Рис. 102*a*), в керамическом образце 10 зерна имели размер от 1 до 3 мкм и присутствовали открытые поры. Как видно на микрофотографиях СЭМ (Рис. 102*b* и 103*a*), образцы 11 и 12 состояли из зерен с размерами от 1 до 5 мкм и не имели открытых пор. Установлено, что при повышении температуры максимального давления прессования плотность керамики увеличивалась от 4,06 до 4,17 г/см³ (на 3%)¹⁰.

¹⁰Трусова Е.А., **Хрущёва А.А.**, Лысенков А.С., Аладьев Н.А.; Горячее прессование мелкозернистой керамики из нанопорошка Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃. // Неорганические материалы, , 2016 – 52 [4] – с. 445-449

NºNº	Температура дости-	Максимальная	Гидростатическая	Относительная
	жения максимально-	температура,	плотность, г/см ³	плотность, %
	го давления на заго-	°C		
	товку, ^о С			
9	1100	1400	3,2	76
10	800	1450	4,06	96,2
11	900	1450	4,15	98,3
12	1000	1450	4,17	98,9
13*	1250	1500	3,97	94,1
14	1550	1550	4,13	97,8

Таблица 18. Условия горячего прессования и плотность керамики 20 вес.% Се_{0,09}Zr_{0,91}O₂/0,4 вес.% MgO/ 79,6 вес.% γAl₂O₃¹⁰

*Дополнительная термообработка в муфельной печи при 1500°С в течение 1 ч.

Рис. 100. График подъема температуры и давления (*a*) и микрофотография (СЭМ) образца 9 из Таблицы 18 (б).

В Таблице 19 приведены данные ЭДС-анализа наиболее плотного образца 12, полученные с помощью приставки локального рентгеноспектрального микроанализа. Анализируемые области выделены цветными рамками на Рис. 1036. По данным элементного анализа, все металлы распределены по поверхности равномерно и в пропорции, соответствующей составу, заложенному при расчете синтеза, с точностью 0,03 ат. %.

Рис. 101. Графики подъема температуры и давления для образцов 10 (*a*), 11 (*б*), 12 (*в*) из Таблицы 18.

Таблица 19. Элементный состав (ат.%) поверхности скола образца 12 (Таблица 18), по данным СЭМ/ЭДС-анализа в областях, обозначенных на Рис. 103*6*.

Спектры	0	Mg	Al	Zr	Ce	Сумма
Спектр 1	69,58	0,14	24,68	5,12	0,48	100,00
Спектр 2	63,64	0,00	35,65	0,65	0,06	100,00
Спектр 3	66,13	0,00	33,77	0,10	0,00	100,00
Максимум	69,58	0,14	35,65	5,12	0,48	
Минимум	63,64	0,00	24,68	0,10	0,00	

После горячего прессования образец 13 (Таблица 18) подвергали дополнительной термообработке на воздухе в печи при 1500°С в течение 1 ч. После этого, по данным РЭМ, размер зерна керамики образца 13 (Рис. 104*a*) не превышал 4 мкм. В результате РЭМ/РМА анализа установлено, что поверхность керамики после дополнительной термообработки стала более однородной с зернами, размеры которых не превышали 4 мкм. Как видно на Рис. 104*6*, элементный состав зерен практически однороден: алюминий, церий и цирконий на поверхности керамики распределены равномерно

Рис. 102. Микрофотографии СЭМ для образцов 10 -а; 11 - б из Таблицы 18.

Рис. 103. Микрофотографии (СЭМ) скола полученного образца керамики 12 (*а* и б) с обозначенными областями ЭДС-анализа поверхности (б), результаты которого представлены в Таблице 19.

На Рис. 105а представлены графики изменения температуры и давления при прессовании для образца 14 (Таблица 18). Установлено, горячем что 1550°С и давления до 30 МПа одновременный подъем температуры до обеспечивает формирование керамического материала c относительной плотностью 97,8%. По данным СЭМ, размер зерна керамики составлял от 2 до 8 МКМ.

На Рис. 106 и 107 представлены микрофотографии наиболее плотного образца 12 (Таблица 18), полученные с помощью РЭМ/РМА. Хорошо видно, что большая часть зерен керамики имеет размеры 0,4-0,8 мкм. Однако наблюдаются и более крупные включения с размерами до 3 мкм и слоистой структурой. Профилометрический анализ поверхности образцов (Рис. 106) показывает, что высота слоев может составлять несколько десятков нанометров, при этом дефекты на поверхности зерен составляют несколько нанометров. По данным РЭМ/РМА-анализа, элементный состав поверхности зерен практически однороден, все металлы распределены по поверхности зерен равномерно и в пропорции, близкой к заложенной при расчете синтеза (Рис. 107).

Рис. 104. Микрофотографии РЭМ (*a*) и РМА (б) образца керамики 13 (Таблица 18), цветами обозначены: Al - красным, Zr – зеленым, Ce – синим.

Рис. 105. Графики подъема температуры и давления *(а)* и микрофотография СЭМ для образца 14 из Таблицы 18 *(б)*.

Рис. 106. Микрофотография РЭМ с профилометрическим анализом поверхности зерен образца 12 (Таблица 18).

Рис.107. Микрофотография РЭМ/РМА анализа керамики образца 12.

Для сравнения составили механическую смесь нанопорошков 0,5 вес.% MgO- γAl_2O_3 и Ce_{0,09}Zr_{0,91}O₂ (80/20, вес.), которую, в дальнейшем, подвергли горячему прессованию в тех же условиях, что и композитный нанопорошок того же химического и фазового состава. Порошки смешали в этаноле и выдержали в сушильном шкафу. Компактирование и спекание механической смеси нанопорошков проводили, используя режимы изменения температуры и давления, представленные на Рис. 108. Гидростатическая плотность полученных образцов составляла 3,40-3,42 г/см³ (относительная плотность ~81%).

Анализ микрофотографии, полученной методом РЭМ (Рис. 109), показывает, что размеры зерен керамики составляли от 1 до 8 мкм. В сравнении с образцом 10 (Рис. 102*a*) размер зерна вырос в ~2,7 раза. По данным РЭМ/РМА анализа, распределение Се и Zr по поверхности зерен керамики, полученной из механической смеси нанопорошков, существенно отличалось от пропорции в исходном порошке, по-видимому, вследствие частичного фазового расслоения

твердого раствора $Ce_{0,09}Zr_{0,91}O_2$ и растворения его компонентов (металлов) в объеме Al_2O_3 (Рис. 109).

Рис. 108. Графики подъема температуры и давления для образца, полученного из механической смеси синтезированных нанопорошков.

Рис. 109. Микрофотография (РЭМ) образца керамики, полученной из механической смеси нанопорошков.

3.4.5. Заключение

Таким образом, в результате тестирования получена мелкозернистая керамика с размером зерна менее 3 мкм и преимущественными размерами 0,4-0,8 мкм и плотностью до 98,9%. Разработанный лабораторный способ синтеза композитных нанопорошков позволяет повысить дисперсность вносимых компонентов, таких как MgO и CeO₂, защитить его от расслоения, обеспечить равномерное распределение металлов в керамике в пропорции, заложенной при расчете синтеза.

Также анализ результатов тестирования показывает, что необходимо продолжение работы, связанное с оптимизацией режимов консолидации разработанной нанопорошковой системы Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃.

выводы

1. Разработан золь-гель синтез порошков оксидов Al, Ce и Zr, состоящих из наночастиц с размерами ≤ 10 нм, а также твердых растворов Ce_xZr_{1-x}O₂ (0,03 \leq x \leq 0,16), с размерами частиц ≤ 20 нм, заключающийся в том, что формирование олигомерного прекурсора происходит *in situ* из низкомолекулярных N-содержащих органических соединений.

2. Установлено, что при величине мольного отношения в реакционной смеси МЭА/Al=1 и ТЭАГ/(Ce+Zr)=1 синтезированные наночастицы Al₂O₃ и Ce_{0,09}Zr_{0,91}O₂, соответственно, имеют средний размер 15 нм и узкое распределение ($\Delta \approx 60$ и 70%, соответственно, при d= 5÷20 нм).

3. Предложен способ получения композитных наночастиц с размерами ≤15 нм состава Ce_{0,09}Zr_{0,91}O₂/MgAl₆O₁₀/γAl₂O₃ путем последовательного нанесения компонентов из золей на γAl₂O₃. Такой дизайн наночастиц на атомномолекулярном уровне может быть положен в основу способа получения химически однородных нанопорошков, предназначенных для спекания мелкозернистой керамики.

4. Предложены предполагаемые схемы химических превращений в процессе формирования наночастиц оксидов Ce, Zr и Al и композитных наночастиц на их основе в условиях золь-гель синтеза с участием МЭА.

5. Установлено, что использование разработанного композитного нанопорошка $Ce_{0,09}Zr_{0,91}O_2/MgAl_6O_{10}/\gamma Al_2O_3$ обеспечивает получение горячим прессованием мелкозернистой керамики с плотностью на 20 отн.% выше, чем у керамики, полученной в тех же условиях из механической смеси того же химического и фазового состава.

СПИСОК ЛИТЕРАТУРЫ

1. Hlavacek V., Puszynski J. A., Chemical Engineering Aspects of Advanced Ceramic Materials, Ind. Eng. Chem. Res. Reviews, 35, (1996) 349-377

2. Shi F. Ceramic Materials – Progress in Modern Ceramics. In Tech. ISBN 978-953-51-0476-6 (2012), 228

3. Namavar F., Wang G., Cheung Ch. L., Sabrianov R.F., Zeng X.Ch., Mei W.N., Thermal stability of nanostructurally stabilized zirconium oxide, Nanotechnology, 12 (2007) 415702

4. Yazdanmehr M. Asadabadi S.J., Majid Ghasemzadeh A.N., Rezvanian M., Electronic structure and bandgap of γ -Al₂O₃ compound using mBJ exchange potential, Nanoscale research letters, 7, (2012) 488

5. Подзорова Л.И., Ильичева А.А., Пенькова О.И., Аладьев Н.А., Волченкова В.А., Куцев С.В., Шворнева Л.И. Модифицированные композиты системы Al₂O₃ – (Ce-TZP) как материалы медицинского назначения, Ж. Персп. материалы, 1, (2016), 32-38

6. Подзорова Л.И., Шворнева Л.И., Ильичёва А.А., Аладьев Н.А., Пенькова О.И., Микроструктура и фазовый состав композитов [ZrO₂-CeO₂] – [Al₂O₃] в присутствии модификаторов MgO и Y₂O₃, Ж. Неорганические материалы, 49 (2013) [4] 389-394

7. Trueba M., Trasatti S.P., γ -Alumina as a support for catalysts: a review of fundamental aspects, Eur.J. Inorg. Chem, (2005), 3393-3403

8. Волкова Г.И., Иванов В.Г., Кухаренко О.А. Влияние условий синтеза на структуру и свойства ультрадисперсных оксигидроксидов алюминия, Химия в интересах устойчивого развития, 13 (2005) 427-432

9. Garderen N., Clemens F.J., Aneziris C.G., Graule T. Improved γ alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. Ceram.Int. 38 (2012) 5481-5492 10. Kim T.-S., Kang I.-C., Goto T., Lee B.-T., Fabrication of continuously porous alumina body by fibrous monolithic and sintering process, Materials transactions, 44 [9] (2003) 1851-1856

11. Mukherjee A., M. Sabiq I., Prathna T.C., Chandrasekaran N. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications, Science against microbial pathogens, Formatex (2011), 245-251

12. Rogojan R., Andronescu E., Ghtulica C., Vasile B.S., Synthesis and characterization of alumina nanopowders obtained by sol-gel method, U.P.B. Sci. Bull. Series B, 73, [2], (2011) 68-76

13. Gabelkov S.V., Tarasov R.V., Poltavtsev N.S., Phase evolution during low-temperature synthesis of MgAl₂O₄, Inorganic Materials, 43 [4] (2007) 462-470

14. Cava S., Tebcherani S.M., Souza I.A., Pianaro S.A., Paskocimas C.A., Structural characterization of phase transition of Al_2O_3 nanopowders obtained by polymeric precursor method, Mater. chem. and phys. 103, (2007), 394-399

15. Zaki T., Kabel K.I., Hassan H., Using modified Pechini method to synthesize α -Al₂O₃ nanoparticles of high surface area, Ceramics International 38 (2012) 4861-4866

16. Siladitya B., Chatterjee M., Ganguli D., Role of a surface active agent in the solemulsion-gel synthesis of spherical alumina powders, J. Sol-gel Sc. And Techn., 15, (1999), 271-277

17. Niesz K., Yang P., Somorjai G.A., Sol-gel synthesis of ordered mesoporous alumina, Chem. Commun. (2005), 1986-1987

18. Дудкин Б.Н., Макаров С.А., Мельничук Д.Г., Истомина Е.И., Коллоиднохимические характеристики золей оксида алюминия. Влияние природы прекурсора и условий синтеза, Э.Ж. «Исследовано в России», (2003), 2419-2428

19. Karim M.R., Rahman M.A., Miah M.A.J., Ahmad H., Yanagisawa M., Ito M., Synthesis of γ -alumina particles and surface characterization, The open colloid science journal, 4, (2011) 32-36

20. Бородин Ю.В., Исследование нанокомпозиционной структуры полученной из золь-гель растворов Al₂O₃, Вектор науки ТГУ, №2, 16, (2011) 55-56

21. Sharifi L., Beyhaghi M., Ebadzadeh T., Ghasemi E., Microwave-assisted sol-gel synthesis of alpha alumina nanopowder and study of the rheological behavior, Ceram. Int., 39, (2013), 1227-1232

22. Mirjalili F., Hasmaliza M., Chuah Abdullah L., Size-controlled synthesis of nano α -alumina particles through the sol-gel method, Ceramics international 36, (2010), 1253-1257

23. Ksapabutr B., Gulari E., Wongkasemjit S., Sol-gel transition study and pyrolysis of alumina-based gels prepared from alumatrane precursor, Colloids and surfaces A: Physicochem. Eng. Asp. 233, (2004) 145-153

24. Roman R., Hernandez T., Gonzalez M., Nano and micro grained alumina powder? A choose before sintering, Bol. Soc. Esp. Ceram. 47 [6] (2008) 311-318

25. Song X., Qu P., Yang H., He X., Qiu G., Synthesis of γ -Al₂O₃ nanoparticles by chemical precipitation method, J. cent. South univ. technol., 12 [5], (2005) 536-541

26. Taleghani M., Riahi-Noori N., Synthesis of alumina nano powder by a gel combustion method, J. of Ceram. Process. Res., 14 [1], (2013) 17-21

27. Saket S., Rasouli S., Ghasemi E., Tahmasebi K., Solution combustion synthesis of nano-crystalline alumina powders, J. of Mater. Sc. And Eng. 4 [8], (2010), 80-84

28. Smovzh D.V., Kalyuzhnyi N.A., Zaikovsky A.V., Novopashin S.A., Synthesis of hollow nanoparticles γ -Al₂O₃, Scientific Research, Advances in nanoparticles, 2, (2013) 120-124

29. Khrustov V.R., Ivanov V.V., Kotov Yu. A., Kaigorodov A.S., Ivanova O.F., Nanostructured composite ceramic materials in the ZrO₂-Al₂O₃ system, Glass physics and chemistry, 33 [4], (2007) 379-386

30. Bousquet C., Cansell F., Elissalde C., Maglione M., Aymonier C., Controlled synthesis of alumina nanopowders using supercritical fluids for ceramics applications, Proceedings, Barselona, (2008) KN_M_5

31. Vaidya S.D., Thakkar N.V., Effect of temperature, pH and ageing time on hydration of rho alumina by studying phase composition and surface properties of transition alumina obtained after thermal dehydration, Mater. Lett. 51 (2001) 295-300

32. Sathyaseelan B., Baskaran I., Sivakumar K., Phase transition behavior of nanocrystalline Al₂O₃ powders, Soft nanoscience letters, 3, (2013), 69-74

33. Mukherjee A., M. Sabiq I., Prathna T.C., Chandrasekaran N., Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications, Science against microbial pathogens, Formatex (2011), p. 245-251

34. Bala T., Armstrong G., Laffir F., Titania-silver and alumina-silver composite nanoparticles: novel, versatile synthesis, reaction mechanism and potential antimicrobial application, J. of colloid and interface science. 356, (2011), pp. 395-403

35. Manicone P.F., Iommetti P.R., Raffaelli L., An overview of zirconia ceramics: basic properties and clinical applications, J. of Dentistry 35 (2007) 819-826

36. Patra A., Friend C.S., Kapoor R., Prasad P.N., Upconversion in Er³⁺: ZrO₂ nanocrystals, J. Phys. Chem. B. 106 (2002) 1909-1912

37. Мармер Э.Н., Балакиенко Ю.М., Новожилов С.А., Хасанов О.Л., Двилис Э.С., Вакуумное спекание керамики из нанопорошков оксида циркония, ISJAEE Международный научный журнал Альтернативная энергетика и экология, 6 [50] (2007) 41-43

38. Vagkopoulou T., Koutayas S.O., Koidis P., Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramics. The European journal of esthetic dentistry, 4 [2] (2009) 130-151

39. Davies L.E., Bonini N.A., Locatelli S., Gonzo E.E., Characterization and catalytic activity of zirconium dioxide prepared by sol-gel. Latin American Applied Research 35 (2005) 23-28

40. Ma X., liu F., Zhang H, Xu L.J., Wei Sh., Li J., Zhang G., Preparation of zirconia nanoparticles in ionic liquid-water and characterization, Appl. Mech. and Mater. 52-54 (2011) 630-632

41. Альмяшева О.В., Федоров Б.А., Смирнов А.В., Гусаров В.В., Размер, морфология и структура частиц нанопорошка диоксида циркония, полученного в гидротермальных условиях, Наносистемы: Физика, химия, математика, 1 [1] (2010) 26-36

42. Tyagi B., Sidhpuria K., Shaik B., Jasra R.V., Synthesis of Nanocrystalline Zirconia Using Sol-Gel and Precipitation Techniques, Ind. Eng. Chem. Res. 45, (2006), 8643-8650

43. Suciu C., Gagea L., Hoffmann A.C., Mocean M., Sol-gel production of zirconia nanoparticles with a new organic precursor, Chemical engineering science, 61 [24] (2006) 7831-7835

44. Fang X., Yang C., An Experimental study on the relationship between the physical properties of CTAB/hexanol/water reverse micelles and $ZrO_2-Y_2O_3$ nanoparticles prepared, J. Colloid Interface Sci., 212 (1999) 242–251

45. Li X., Chen L., Li B., Preparation of zirconia nanopowders in ultrasonic field by the sol-gel method, Key Eng. Mater 280-283 (2005) 981-986

46. Feng J., Wang X.Y., Ren X.R., Huang Z.C., Zhou R., Pan W., Structure characterization calculation of tetragonal zirconia. Materials science and engineering, 18 (2011) 202008

47. Subbarao E.C., Maiti H.S., Srivastava K.K., Martensitic transformation in zirconia. Phys. Status Solidi, 21, [1], (1974) 9-40

48. Śtefanić G., Musić S., Factors influencing the stability of low temperature tetragonal ZrO₂, Croatica Chemica Acta, 75, [3] (2002) 727-767

49. Heshmatpour F., Aghakhanpour R.B., Synthesis and characterization of nanocrystalline zirconia powder by simple sol-gel method with glucose and fructose as organic additives, Powder Tech. 205 (2011) 193-200

50. Srinivasan R., De Angelis R. Davis B.H., Factors influencing the stability of the tetragonal form of zirconia, J. Mater. Res. 1 [4], (1986) 583-588

51. Schmidt T., Mennig M. Schmidt H., New method for the preparation and stabilization of ranoparticulate t- ZrO_2 by a combined sol–gel and solvothermal process. J. Am. Ceram. Soc., 90 [5] (2007) 1401–1405

52. Yuan Z.-Y., Vantomme A., Léonard A., Su B.-L., Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia, Chem. Comm., (2003) 1558-1559

53. Xu Q. Li, J., Wu Z., Feng D., Yang J., Wei J., Wu Q., Tu B., Cao Y., Zhao D., Facile synthesis of highly stable and well-dispersed mesoporous ZrO₂/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene, Phys. Chem., 12 (2010) 10996-11003

54. Duan G., Zhang C., Li A., Yang X., Lu L., Wang X., Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template, Nanoscale Res. Let. 3, (2008) 118-122

55. Cruz H.S., Spino J., Grathwohl G., Nanocrystalline ZrO₂ ceramics with idealized macropores. J. Eur. Cer.Soc. 28(2008) 1783-1791

56. Ma X., Klosterman L., Hu Y.-Y., Liu X., Schmidt-Rohr K., Mallapragada S., Akinc M., Aqueous route synthesis of mesoporous ZrO₂ by agarose templation, J. Am. Cer. Soc. 95 [11] (2012), 3455-3462

57. Mokhtar M., Basahel S.N., Ali T.T. Effect of synthesis methods for mesoporous zirconia on its structural and textural properties. J. Mater. Sci. 48 (2013), 2705-2713

58. Shukla S., Seal S., Vanfleet R., Sol-gel synthesis and phase evolution behavior of sterically stabilized nanocrystalline zirconia. J. Sol-gel science and Technology 27, (2003) 119-136

59. Szepesi C.J., Adair J.H. High yield hydrothermal synthesis of nano-scale zirconia and YTZP. J. Am. Ceram. Soc. 94 (2011) [12] 4239-4246

60. Ipek M., The effect of MgO and MgO-Al₂O₃ on zirconia produced by precipitation method, Springer proceedings in physics, 164 ,Springer International Publishing Switzerland, 2015, pp.129-135

61. Mogensen M., Sammes N.M., Tompsett G.A., Physical and electrochemical properties of pure and doped ceria, Solid St. Ion. 129 (2000) 63-94

62. Yuan Q., Duan H.-H., Li L.-L., Sun L.D., Zhang Ya-W., Yan Ch.-H., Controlled synthesis and assembly of ceria-based nanomaterials, J. of col. and int. sc., 335 (2009) 151-167

63. Ivanov V.K., Polezhaeva O.S., Shcherbakov A.B., Gil D.O., Tret'yakov Yu.D., Microwave-hydrothermal synthesis of stable nanocrystalline ceria sols for biomedical uses, Russ. J. Inorg. Chem. 55 [1] (2010) 1-5 64. Rane. N., Zou H., Buelna G., Lin J. Y.S., Sol-gel synthesis and properties of unsupported and supported mesoporous ceria membranes, J. Membrane Sc. 256 (2005) 89-97

65. Barreca D., Gasparotto A., Maccato C., Maragno C., Tondello E., Toward the innovative synthesis of columnar CeO₂ nanostructures, Langmuir 22 (2006) 8639–8641

66. Zhang D., Niu F., Li H., Shi L., Fang J., Uniform ceria nanospheres: solvothermal synthesis, formation mechanism, size- control and catalytic activity, Powder tech. 207 (2011) 35-41

67. Третьяков Ю.Д., Олейников Н.Н., Можаев А.П., Основы криохимической технологии. М.: Высшая школа, (1987) 142 с.

V.K. Ivanov, O.S. Polezhaeva, A.E. Baranchikov, A.B. Shcherbakov, Thermal stability of nanocrystalline CeO₂ prepared through freeze drying. Inorganic Materials, 46, [1] (2010) 43-46

69. Генералов М.Б. Основные процессы криохимической нанотехнологии. Профессия (2010) 349 с.

70. Vantomme A., Yuan Z.Y., Du G.H., Su B.L., Surfactant-assisted large-scale preparation of crystalline CeO₂ nanorods, Langmuir 21 (2005) 1132–1135

71. Zhang D.S., Huang L., Zhang J.P., Shi L.Y., Facile synthesis of ceria rhombic microplates, J. Mater. Sci. 43 (2008) 5647–5650

72. Zhang D.S., Fu H.X., Shi L.Y., Pan C.S., Li Q., Chu Y.L., Yu W.J., Synthesis of CeO₂ nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem. 46 (2007) 2446–2451

73. Duran P., Capel F., Guitierrez D., Tartaj J., Moure C., Cerium (IV) oxide synthesis and sinterable powders prepared by the polymeric organic complex solution method, J. of Eur. Cer. Soc. 22 (2002) 1711-1721

74. Mahmud W.E., Faidah A., Microwave assisted hydrothermal synthesis of engineered cerium oxide nanopowders, J. of the Eur. Cer. Soc. 32 (2012) 3537-3541

75. Tang W., Li W., Shan X., Wu X., Chen Yu., Template-free synthesis of hierarchical layer-stacking CeO_2 nanostructure with enhanced catalytic oxidation activity, Mat. Let. 140 (2015) 95-98

76. Boch P., Niepce J.- C., Ceramic materials. Processes, properties and applications, ISTE Ltd, (2007) 512-513

77. Bolon A.M., Gentleman M.M., Raman spectroscopic observations of ferroelastic switching in ceria-stabilized zirconia, J. Am. Cer. Soc. 94 (2011) [12] 4478-4482

78. Daturi M., Binet C., Lavalley J.C., Vidal H., Kaspar J., Graziani M., Blanchard G., Influence of the activation conditions on the elimination of residual impurities on ceria-zirconia mixed oxides, J. Chem. Phys. 95 (1998) 2048-2060

79. Sobukawa H., Development of ceria-zirconia solid solutions and future trends. Sp. Issue Oxygen storage materials for automotive catalysts – ceria-zirconia solid solutions, Review. Vol. 37, № 4. 2002, 374001

80. Gateshki M., Niederberger M., Deshpande A.S., Ren Y., Petkov V., Atomic-scale structure of nanocrystalline CeO_2 -Zr O_2 oxides by total X-ray diffraction and pair distribution function analysis, J. Phys. Condens. Matter. 19 (2007) 156205

81. Alifanti M., Baps B., Blangenois N., Naud J., Grange P., Delmon B., Characterization of CeO_2 -ZrO₂ mixed oxides. Comparison of the citrate and sol-gel methods, Chem. Mater. 15 (2003) 395-403

82. Quinelato A.L., Longo E., Leite E.R., Bernardi I.B., Varela J.A., Synthesis and sintering of ZrO₂-CeO₂ powder by use of polymeric precursor based on Pechini process, J. Mater. Sc. 36 (2001) 3825-3830

83. Prasad D.H., Lee J.-H., Lee H.-W., Kim B.-K., Park J.-S., Chemical synthesis and characterization of $Ce_xZr_{1-x}O_2$ powders by a modified sol-gel method, J. Ceram. Process. Research, 10, (2009) [6] 748-752

84. Гаврилова Н.Н., Назаров В.В., Синтез гидрозолей CeO₂-ZrO₂ с использованием пептизации при комнатной температуре, Коллоидный журнал, 72, [4], (2010) 465-472

85. Strandwitz N.C., Shaner S., Stucky G.D., Compositional tunability and high temperature stability of ceria-zirconia hollow spheres, J. Mater Chem. 21, (2011), 10672

86. Liang Ch., Qiu J., Li Zh., Li C., Synthesis of nanostructured ceria, zirconia and ceria-zirconia solid solutions using an ultrahigh surface area carbon material as a template, Nanotechnology 15, (2004), 843-847

Nikumbh A.K., Adhyapak P.V., Formation characterization and rheological properties of zirconia and ceria-stabilized zirconia, Nat. Science. 2 (2010) [7] 694-706
Zhang F., Chen Ch.-H., Phases in ceria-zirconia binary oxide (1-x) CeO₂ – xZrO₂ nanoparticles: The effect of particle size, J. Am. Cer. Soc., 89, (2006), [3], 1028-1036
Tadacoro S.K., Muccillo E.N.S., Physical characteristics and sintering behavior of ultrafine zirconia-ceria powders, J. of Eur. Cer. Soc. 22, (2002), 1723-1728
Martinez-Arias A., Fernandez-Garcia M., Ballesteros V., Salamanca L.N., Conesa J.C., Otero C., Soria J., Characterization of high surface area Zr-Ce (1:1) mixed

91. Podriguez J.A., Hanson J.C., Kim J.-Y., Liu G., Properties of CeO_2 and $Ce_{1-x}Zr_xO_2$ nanoparticles: x-ray absorption near-edge spectroscopy, density functional, and time-resolved x-ray diffraction studies, J. Phys. Chem. B. 107, (2003) 355-3543

oxide prepared by a microemulsion method, Langmuir 15, (1999), 4796-4802

92. Yashima M., Hirose T., Katano S., Suzuki Ya., Kakihana M., Yoshimura M., Structural changes of ZrO₂-CeO₂ solid solutions around the monoclinic-tetragonal phase boundary, Physical review B, 51, (1995), [13], 8018-8025

93. Mista W., Rayment T., Hanuza J., Macalik L., Synthesis and characterization of metastable CeO₂-ZrO₂ solid solution obtained by polymerized complex method, Mater. Sc. – Poland, 22, (2004), [2], 153-170

94. Yamamoto Sh., Kakihana M., Kato Sh., A polymer complex solution route to the low-temperature synthesis of tetragonal $Zr_{0,88}Ce_{0,12}O_2$ with a reduced amount of organic substance, J. Alloys Comp., 297 (2000), 81

95. Reddy B.M., Reddy G.K., Reddy L.H., Ganesh I., Synthesis of nanosized ceriazirconia solid solutions by a rapid microwave-assisted combustion method, The Open Phys. Chem. J. 3, (2009), 24-29

96. Sharma S.C., Gokhale N.M., Dayal R., Lal R., Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique, Bull. Mater. Sci. 25, (2002), 15-20

97. Колмаков А.Г., Баранов Е.Е., Лазарев Э.М., Аладьев Н.А., Мухина Ю.Э., Трансформационно-упрочненная ZrO₂-CeO₂ керамика на основе порошков синтезированных методом ультразвукового распылительного пиролиза, Перспективные материалы 1, (2011), 53-58

98. Xu T., Wang P., Fang P., Kan Ya., Chen L., Vleugels J., Biest O. V., Landuyt J.V., Phase assembly and microstructure of CeO_2 – doped ZrO_2 ceramics prepared by spark plasma sintering, J. of Eur. Ceram. Soc. 25, (2005), 3437-3442

99. Shevchenko A.V., Dudnik E.V., Ruban A.K., Zaitseva Z.A., Lopato L.M., Functional graded materials based on ZrO_2 and Al_2O_3 production methods, Powder Metallurgy and Metal Ceramics 42, (2003), [3-4], 146-153

100. Apler A.M., Stewart G.H., Science of ceramics, Academic Press, London, 3 (1967) 339

101. Sarkar D., Mohapatra D., Ray S., Bhattacharyya S., Adak S., Mitra N., Synthesis and characterization of sol-gel derived ZrO₂ doped Al₂O₃ nanopowder, Cer. Int. 33 (2007) [7] 1275-1282

102. Sarkar D., Adak S., Mitra N.K., Preparation and characterization of an Al_2O_3 -ZrO₂ nanocomposite, Part 1; Powder synthesis and transformation behaviour during fracture, Composites A 38, (2007), [1], 124-131

103. Angel J.D., Aguilera A.F., Galindo I.R., Martinez M., Viveros T., Synthesis and characterization of alumina-zirconia powders obtained by sol-gel method: effect of solvent and water addition rate, Mater. Sc. and App., 3 (2012), 650-657

104. Montanaro L., Chevalier J., Naglieri V., Joly-Pottuz L., Design of aluminazirconia nanocomposite powders for implants development, Cer. Mater. 62, (2010), [3] 335-341

105. Palmero P., Naglieri V., Chevalier J., Fantozzi G., Montanaro L., Alumina-based nanocomposites obtained by doping with inorganic salt solution: application to immiscible and reaction system, J. Eur. Ceram. Soc. 29, (2009), 59-66

106. Shevchenko A.V., Dudnik E.V., Ruban A.K., Vereschaka V.M., Red'ko V.P., Lopato L.M, Hydrothermal synthesis of nanocrystalline powders in the ZrO_2 - Y_2O_3 -

 CeO_2 system, Nanostructured Mater. Powder Met. and Met. Cer., 46, (2007), [1-2], 18-19

107. Dudnik E.V., Shevchenko A.V., Ruban A.K., Red'ko V.P., Lopato L.M., Microstructural design of ZrO₂-Y₂O₃-CeO₂-Al₂O₃ materials, Powder metallurgy and met. Ceramics, 49, (2011), [9-10], 528-536

108. Dudnik E.V., Modern methods for hydrothermal synthesis of ZrO_2 -based nanocrystalline powders, Powder Met. and Metal Sc. 48, (2009), [3], 238-248

109. Dudnik E.V., Shevchenko A.V., Variation in properties of ZrO2-Y2O3-CeO2-Al2O3 powders during thermal treatment at 400 to 1300°C, Powder Met. and Metal Sc., 49, (2010), [3], 125-134

110. Exter P., Winnubst L., Leuwerink T.H., Burggraaf A.J., Effect of calcination on the sintering of gel-derived, zirconia- toughened alumina, J.Am.Cer.Soc., 77, (1994), [9], 2376-2380

111. He Y.J., Winnubst, Verweij H. Burggraaf A.J., Sinter forging of zirconia toughened alumina. J. of Mater. Sc. 29, (1994), 6505-6512

112. Sun Q., Zheng Y., Li Z., Zheng Y., Xiao Y., Cai G., Wei K., Studies on the improved thermal stability for doped ordered mesoporous gamma-alumina, Phys. Chem. Phys., 15, (2013), 5670

113. Rao P.G., Iwasa M., Tanaka T., Kondon I., Inoue T., Preparation and mechanical properties of Al₂O₃-15wt% ZrO₂ composites, Scripta Mater., 48, (2003), 437-441

114. De Aza A.H., Chevalier J., Fantozzi G., Slow-crack-growth behaviour of zirconia-toughened alumina ceramics processed by different methods, J.Am.Cer.Soc., 86, (2003), [1], 115-120

115. Иванов-Павлов Д.А., Конаков В.Г., Соловьева Е.Н., Борисова Н.В., Ушаков В.М., Взаимосвязь размера частиц и фазообразования в системе Al₂O₃-ZrO₂, Вестник СПб университета, 4, (2008), [3], 85-94

116. Konakov V.G., Seal S., Solovieva E.N., Ivanov-Pavlov D.A., Pivovarov M.M., Golubev S.N., Shorochov A.V., Influence of precursor dispersity and agglomeration on mechanical characteristics of ZrO_2 -Ce₂O₃ and ZrO_2 -Y₂O₃-Ce₂O₃ ceramics, Rev. Adv. Mater. Sci., 16, (2007), 96-101

117. Альмяшева О.В., Гусаров В.В., Гидротермальный синтез наночастиц и нанокомпозитов в системе ZrO₂-Al₂O₃-H₂O, Междунар. научный журнал «Альтернативная энергетика и экология», 1, (2007), [45], 113-114

118. Королёв П.В., Князев А.В., Гаврилов И.Р., Гаврилов М.Р., Королев А.В. Рентгеновское И калориметрическое исследование порошковых нанокристаллических систем основе $ZrO_2(Y)$ Al_2O_3 на И co вторым нерастворимым компонентом, Физика твердого тела, 54, (2012), [2], 252-257

119. Duh J.-G., Dai H.-T., Hsu W.-Y., Synthesis and sintering behaviour in CeO₂-ZrO₂ ceramics, J. Mater. Sc. 23, (1988), 2786-2791

120. Schubert U., Metal oxide/ silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors, Adv. Eng. Mater. 6, [3], (2004), 173-176

121. Fric H., Puchberger M., Schubert U. Coordination of mono- and diamines to titanium and zirconium alkoxides. J. Sol-Gel Sci. Techn., 40, (2006), 155-162

122. Yang J., Lukashuk L., Akbarzadeh J., Stoger-Pollach M., Peterlik H., Fottinger K., Rupprechter G., Schubert U., Different synthesis protocols for Co₃O₄-CeO₂ catalysts – Part 1 Influence on the morphology on the nanoscale, Chem. A Eur. J., 21, (2015), 885-892

123. Rietveld H.M., A profile refinement method for nuclear and magnetic structures,J. Appl. Cryst., 2 (1969), 65-71

124. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Metal science and heat treatment, 42 [8] (2000) 309-313

125. Иванов В.В., Паранин С.Н., Вихрев А.Н., Ноздрин А.А., Эффективность динамического метода уплотнения наноразмерных порошков, Материаловедение, 5, (1997), 49-55

126. Н.А. Шабанова, П.Д. Саркисов Золь-гель технологии. Нанодисперсный кремнезем. Бином, Лаборатория знаний (Нанотехнологии) Москва (2012) 328 с.

127. Figiel P., Rozmus M., Smuk B. Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. JAMME 2011, 48 (2011), 29-34

128. Nikumbh A.K., Adhyapak P.V., Formation characterization and rheological properties of zirconia and ceria-stabilized zirconia. Nat. Science, 2, [7], (2010) 694-706 129. Garvie R.C., Hannink R.H., Pascoe R.T., Ceramic steel. Nature 258, [5537], (1975) 703-704

130. Kelly P.M., Wauchope C.J., The tetragonal to monoclinic martensitic transformation in zirconia, Key Eng. Mater. 153-154, (1998) 97-124

131. Chevalier J., Gremillard L., Virkar A.V., Clarke D.R., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J.Am.Cer.Soc., 92 (2009)[9], 1901-1920

132. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. ООО Принта, Москва, 288 (2010) 20

133. Trusova E.A., Vokhmintcev K.V. Obtaining of ZnO nanoparticles decorated with Bi_2O_3 and NiO by modified sol-gel technique // J. of the Am. Cer. soc. 97, [1] (2014) 135-140

134. Алымов М.И. Конструкционные порошковые наноматериалы. Композиты и наноструктуры, 2 (2010), 5-11

135. Wojtowicz B., Pyda W. Two-step sintering and related properties of 10 vol.% ZrO_2 -Al₂O₃ composites derived from filter and cold isostatic pressing. Ceramic Materials, 64, [3], (2011), 814-819

136. Matsumoto Y., Hirota K., Yamaguchi O. Mechanical properties of hot isostatically pressed zirconia-toughened alumina ceramics prepared from coprecipitated powders. J. Am. Cer. Soc. 76, [10], (1993) 2677-2680

137. Ivanov V.V., Kaygorodov A.S., Khrustov V.R., Paranin S.N. Fine-grained alumina-based ceramics produced using magnetic pulsed compaction. Intech. Cer. Mater. – Progress in Modern Ceram. 3, (2012) 43-64